
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

String Pattern Matching Algorithms

Raphael Ribeiro da Costa e Silva

Final Essay

mac 499 — Capstone Project

Supervisor: Prof. Dr. Carlos E. Ferreira

São Paulo

January 25, 2023

"The beauty of algorithms is that they are self-
contained, timeless, and universal." - Edsger W. Dijkstra

i

Acknowledgements

I would like to express my deepest gratitude to those who have supported and encour-

aged me throughout my academic journey. I would like to thank my advisor Dr. Carlos E.

Ferreira, for his guidance, knowledge, and support. I appreciate the time and effort he has

invested in helping me develop and complete this monograph.

I would also like to thank my family, friends, and classmates who have offered me

their love, support, and encouragement. Their belief in me has been a constant source of

motivation throughout my studies.

I am grateful to the faculty and staff of the Institute of Mathematics and Statistics

for providing me with a world-class education and the tools and resources necessary to

succeed.

Thank you all for your support and for helping me to achieve this important milestone

in my life.

Resumo

Raphael Ribeiro da Costa e Silva. Algoritmos de Busca de Padrões em Strings. Mo-

nografia (Bacharelado). Instituto de Matemática e Estatística, Universidade de São Paulo,

São Paulo, 2023.

O Pareamento Simples e Múltiplo de Strings é um dos problemas básicos de algoritmos em strings

e vários algoritmos foram propostos para resolvê-lo. Existem soluções práticas para problemas reais que

podem ser desenvolvidas usando esses algoritmos, incluindo, detecção de intrusos em sistemas, biologia

evolucionária, linguística computacional e recuperação de dados. Nesse trabalho, estudamos diversos algo-

ritmos propostos para resolver o problema de pareamento de strings, começando com pareamento simples

e prosseguindo para discutir suas extensões para lidar com múltiplos padrões. Também foram conduzido

experimentos para comparar a performance desses algoritmos.

Palavras-chave: Busca de Padrões. Strings. Pareamento.

Abstract

Raphael Ribeiro da Costa e Silva. String Pattern Matching Algorithms. Capstone

Project Report (Bachelor). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2023.

The String Pattern Matching Problem is one of the basic string algorithms problems and several al-

gorithms have been proposed to solve it. There are practical solutions to real-world problems that can be

developed using these algorithms, including, but not limited to, intrusion detection systems, evolutionary

biology, computational linguistics, and data retrieval. In this paper, we shall study several algorithms pro-

posed to solve the string matching problem, starting with single patterns and then proceeding to discuss

its extensions to deal with multiple patterns. We also conduct experiments to compare the performance of

these algorithms.

Keywords: Pattern Searching. Strings. Matching.

vii

List of Abbreviations

BM Boyer-Moore algorithm

BMH Boyer-Moore-Horspool algorithm

TDS Trie Data Structure

AHS Aho-Corasick Algorithm

WMN Wu-Manber algorithm

SPSM Single Pattern String Matching Problem

MPSM Multiple Pattern String Matching Problem

List of Symbols

 Text string

𝑃 Pattern for the single pattern matching problem

 set of patterns for the multiple pattern matching problem

 an Alphabet of symbols

viii

List of Figures

2.1 Trie Data Structure for the set of strings  = {𝑎𝑑𝑎, 𝑎𝑏𝑐, 𝑐𝑏𝑎, 𝑎𝑑𝑑, 𝑎𝑏𝑟𝑎}. 18

2.2 Trie of suffixes for  = abracadabra . 20

2.3 Trie of suffixes for  = 𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑐𝑏𝑎𝑎𝑏𝑐𝑐 21

3.1 Aho Corasick Data Structure for  = 𝑎𝑏𝑐𝑎𝑏𝑑𝑎 and  = [𝑏𝑐, 𝑏𝑑, 𝑎𝑏𝑐, 𝑎𝑏𝑑]. 24

3.2 Aho Corasick Data Structure for  = 𝑎𝑏𝑐𝑑 and  = [𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑𝑒, 𝑑]. . 26

3.3 Aho Corasick Data Structure, now with exit links added, for  = 𝑎𝑏𝑐𝑑 and

 = [𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑𝑒, 𝑑]. 27

List of Tables

2.1 In this example, a mismatch occurs when comparing a-c. Then, we shift

the pattern so that the letter a it is aligned with the rightmost a in 𝑃 . . . 4

2.2 In this example, a mismatch occurs when comparing d-a. But there is no

occurrence of the mismatched character in 𝑝. So we shift the pattern past

the mismatched character . 4

2.3 A mismatch occurs comparing c-a. In this case, 𝑡 = ada. We can shift the

pattern until it is aligned with the rightmost occurence of ada, which

occurs at index 1. 5

2.4 In this case, 𝑡 = ada. There is no other occurence of ada in  , but we can

align the suffix da of 𝑡 with the prefix ba of P 5

2.5 Tables 𝑓 and 𝑠 of Boyer-Moore Algorithm for 𝑃 = 𝑏𝑎𝑎𝑏𝑎𝑏𝑎. 6

ix

2.6 In this case, a mismatch occurs comparing c-b. So we shift the pattern to

align it with the next rightmost occurrence of 𝑐 in P 8

2.7 In this case, a mismatch occurs comparing b-a. So we have to shift the

pattern to align it to the rightmost occurrence of b in  . Since there is any,

we simply move the pattern past the character a 9

2.8 Bad-Character table for 𝑝 ∶= 𝐴𝐶𝑇𝐺 . 10

2.9 Bad-Character table for 𝑝 ∶= 𝑎𝑏𝑟𝑎 . 11

2.10 Prefix function for  ∶= 𝐷𝐴𝐶𝐷𝐴𝐶𝐴𝐶 and 𝑝 ∶= 𝐴𝐶𝐴𝐶 15

2.11 Bitmask table for 𝑝 ∶= 𝑎𝑏𝑟𝑎 . 15

2.12 Execution trace of the Shift-Or Algorithm for 𝑝 = 𝑎𝑏𝑟𝑎 and 𝑇 = 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 17

2.13 Bitmask table for 𝑝 = 𝐴𝐶𝑇𝐺 . 17

2.14 Execution trace of the Shift-Or Algorithm for 𝑝 = 𝐴𝐶𝑇𝐺 be a pattern and

𝑇 = 𝐴𝑇𝐴𝐴𝐶𝑇𝐺𝑇𝐶𝐴 . 18

2.15 The suffixes of abracadabra . 20

2.16 The suffixes of 𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑐𝑏𝑎𝑎𝑏𝑐𝑐 . 21

3.1 Prefix Table for  = 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 and  = [𝑎𝑏𝑟𝑎, 𝑐𝑎𝑑𝑎, 𝑏𝑟𝑎, 𝑎𝑐𝑎] with 𝐵 = 2 30

3.2 Shift table for  = [𝑎𝑏𝑟𝑎, 𝑐𝑎𝑑𝑎, 𝑏𝑟𝑎, 𝑎𝑐𝑎] 31

3.3 Searching phase of Wu-Manber algorithm 32

4.1 Running time for the text Raven, by Edgar Allan Poe. 34

4.2 Running time for the text Rise, by Maya Angelou. 34

4.3 Running time for the book "DonQuixote" by Miguel de Cervantes. . . . 35

4.4 Running time for the book "Hamlet" by Shakespeare. 35

4.5 Running time for the multiple pattern algorithms for book "DonQuixote"

by Miguel de Cervantes. 36

4.6 Running time for the multiple pattern algorithms for book "Hamlet" by

Shakespeare. 36

List of Programs

2.1 Brute force search . 3

2.2 Boyer-Moore BC Table. 5

x

2.3 Boyer-Moore initialization. 7

2.4 Boyer-Moore search. 7

2.5 BMH init function. 9

2.6 BMH search function. 9

2.7 KMP Algorithm prefix function . 13

2.8 KMP Search . 13

2.9 Shift-Or Algorithm . 16

2.10 Trie node . 18

2.11 Trie insert function. 19

3.1 Aho-Corasick build phase . 27

3.2 Aho-Corasick Search Phase . 28

3.3 Wu-Manber Preprocessing . 29

3.4 Wu-Manber Search . 31

xi

Contents

1 Introduction 1

2 Single Pattern String Matching 3

2.1 Introduction . 3

2.2 Brute Force . 3

2.3 Boyer-Moore . 4

2.3.1 Bad Character . 4

2.3.2 Good Suffix . 5

2.3.3 Preprocessing . 6

2.3.4 Search . 7

2.3.5 Complexity . 8

2.4 Boyer-Moore-Horspool Algorithm. 8

2.4.1 Preprocessing . 8

2.4.2 Search . 9

2.4.3 Example 1 . 10

2.4.4 Example 2 . 10

2.4.5 Complexity . 11

2.5 KMP Algorithm . 12

2.5.1 Prefix Function . 12

2.5.2 Example . 12

2.5.3 Proposition 1 . 12

2.5.4 Proposition 2 . 12

2.5.5 Optimizations . 12

2.5.6 Preprocessing . 13

2.5.7 Search . 13

2.5.8 Complexity . 14

2.5.9 Example 1 . 14

2.6 Shift-Or Algorithm . 15

xii

2.6.1 Bitmask . 15

2.6.2 Matching . 15

2.6.3 Algorithm . 16

2.6.4 Example 1 . 16

2.6.5 Example 2 . 17

2.7 Trie Data Structure . 17

2.7.1 Construction . 19

2.7.2 Pattern Searching . 19

3 Multiple Pattern String Matching 23

3.1 Introduction . 23

3.2 Aho-Corasick . 23

3.2.1 Preprocessing . 23

3.2.2 Suffix Link . 24

3.2.3 Search . 25

3.2.4 Exit Links . 25

3.2.5 Final Algorithm . 26

3.2.6 Complexity . 28

3.3 Wu-Manber . 28

3.3.1 Polynomial rolling hash . 28

3.3.2 Preprocessing . 29

3.3.3 Search . 31

3.3.4 Complexity . 32

4 Comparative Analysis of Performance 33

4.1 Introduction . 33

4.2 Single Pattern Experiments . 33

4.2.1 Experiment 1 . 33

4.2.2 Experiment 2 . 34

4.2.3 Experiment 3 . 34

4.2.4 Experiment 4 . 34

4.2.5 Results . 35

4.3 Multiple Pattern Experiments . 35

4.3.1 Experiment 1 . 35

4.3.2 Experiment 2 . 36

4.3.3 Results . 36

5 Final Considerations 37

xiii

Bibliography 39

1

Chapter 1

Introduction

An alphabet Σ is a finite set. A symbol is an element 𝑠 ∈ Σ. A string is a finite
sequence of symbols, i.e, elements of an alphabet. The set of all strings over Σ is denoted
by Σ ∗. We say a string 𝑝 ∈ Σ ∗ is a pattern over a fixed alphabet Σ if 𝑝 consists of symbols
from Σ. Let 𝑠 be a string and denote 𝑠 ∶= 𝑠1⋯ 𝑠𝑛. We say that a subsequence 𝑠𝑖 ⋯ 𝑠𝑗 of
𝑠 is a substring of 𝑠. An ocurrence of 𝑢 in 𝑠 is a pair (𝑖, 𝑗) such that 𝑢 ∶= 𝑠𝑖 ⋯ 𝑠𝑗 is a
substring of 𝑠. A prefix of 𝑠 is a substring 𝑢 ∶= 𝑠0 ⋯ 𝑠𝑘 . i.e. 𝑠 starts with 𝑢. A suffix of
𝑠 is a substring 𝑢 ∶= 𝑠𝑛−𝑘 ⋯ 𝑠𝑛−1. i.e. 𝑠 ends with 𝑢. A proper prefix of 𝑠 is a prefix 𝑢 of
𝑠 such that 𝑢 ≠ 𝑠. Moreover, a proper suffix of 𝑠 is a suffix 𝑢 of 𝑠 such that 𝑢 ≠ 𝑠. A
border of 𝑠 is a substring 𝑢 of 𝑠 such that 𝑢 is a proper suffix of 𝑠 and 𝑢 is a proper prefix of 𝑠.

Let 𝑃 be a set of patterns over a fixed alphabet Σ and let 𝑇 be a fixed string called
text input. The Multiple Pattern String Matching (MPSM) is the problem of finding all
occurrences of all patterns of 𝑃 in 𝑇 . The Single Pattern String Matching (SPSM) is a
special case of (MPSM) by adding the constraint |𝑃 | = 1.

The MPSM is one of the basic string algorithms problems and several algorithms
have been proposed to solve it. There are practical solutions to real-world problems that
can be developed using these algorithms, including, but not limited to, intrusion detection
systems, evolutionary biology, computational linguistics, and data retrieval. In this paper,
we shall study the first algorithms proposed to the string matching problem, starting
with single patterns and then proceeding to discuss its extensions to deal with multiple
patterns. We shall study other algorithms and data structures for the multiple pattern
string matching problem and then compare those algorithms regarding to the structure of
the problem.

3

Chapter 2

Single Pattern String Matching

2.1 Introduction

In this chapter, we shall study algorithms that solve the following problem: Given a
text  and a pattern 𝑃 , both with symbols from the alphabet , find all occurences of 𝑃 in
 .
We discuss the algorithms of Boyer-Moore and its heuristics; the Boyer-Moore-Horspool al-
gorithm, which is a simplification of the original Boyer-Moore; and the Trie Data Structure.
After this chapter, when we proceed to the multiple pattern problem, we will see further
generalizations of those same algorithms in order to deal with multiple patterns.

2.2 Brute Force

Let 𝑇 be a input text and 𝑃 a pattern. A naive algorithm for finding all occurrences of
𝑃 in 𝑇 works as follows: we compare the text with pattern from left to right. At iteration
𝑖, we compare 𝑃[0] with 𝑇[𝑖]. If the first character is matched, then we need to check
whether the remaining pattern is matched or not. Check the table 2.1

Program 2.1 Brute force search

1 function BRUTEFORCEsearch(𝑃 , 𝑇) ⊳ returns the set of ocurrences of 𝑃 in 𝑇
2 for 𝑖 ∶= 0, 𝑖 < |𝑇 |, i ← i + 1
3 match ← true

4 for 𝑗 ∶= 0, 𝑗 < |𝑃 |, j ← j + 1
5 if 𝑇 [𝑖 + 𝑗] ≠ 𝑃[𝑗]
6 match ← false

7 break

8 if match
9 ans ← ans ∪{𝑖}

10 return ans

In worst case, the comparison in line 4 holds true for every iteration and the loop in

4

2 | SINGLE PATTERN STRING MATCHING

line 5 is executed. So, the time complexity is (𝑚𝑛). The space complexity is (1) since
we just need some flags beside the sizes of 𝑃 and 𝑇 themselves.

2.3 Boyer-Moore

We can improve the performance of the brute force algorithm by using some heuristics
but yet using the same idea. Instead of comparing character by character, the Boyer-Moore
Algorithm Boyer and Moore, 1977 introduces the bad character heuristic and the good
suffix heuristic in order to shift the pattern.

2.3.1 Bad Character

When a mismatch occurs, we have to shift the pattern until we no longer have a
mismatch, i.e, until we found a match, or until the pattern move past the mismatched
character. The Bad Character rule tells us to shift the pattern until we align it with the
rightmost occurrence of the mismatched character. We can see some examples:

Example

0 1 2 3 4 5 6 7 8 9

𝑇 a b b a d a b a c b
𝑃 a b c a b c

shift a b c a b c

Table 2.1: In this example, a mismatch occurs when comparing a-c. Then, we shift the pattern so that
the letter a it is aligned with the rightmost a in 𝑃 .

Example

0 1 2 3 4 5 6 7 8 9

𝑇 a b b d a d b a c b
𝑃 a b c a

shift a b c a

Table 2.2: In this example, a mismatch occurs when comparing d-a. But there is no occurrence of the
mismatched character in 𝑝. So we shift the pattern past the mismatched character

To summarize, the Bad Character rule tells us to shift the pattern until the text is
aligned with the righmost occurence of the mismatched character. We can simply calculate
the righmost occurence 𝑥 for each character, and, during the search phase, we have to
shift the pattern by 𝑥 − 𝑠 where s is the number of matched characters.

We are going to build a table BC for the bad character heuristic. To do so, we need to
map for each symbol 𝑠 ∈ , the index of its rightmost occurrence in 𝑃 , or −1 if 𝑠 does not
occur in 𝑃 . Therefore, the program 2.2 code builds the BC table

2.3 | BOYER-MOORE

5

Program 2.2 Boyer-Moore BC Table.

1 function buildBC(T,P) ⊳ returns the BC Table
2 for 𝑠 ∈ 
3 bc[s] = −1
4 end

5 j ← 0
6 for 𝑐 ∈ 𝑃
7 bc[c] = j
8 j ← j +1
9 end

10 return bc

2.3.2 Good Suffix

The second rule we are goint to apply is the Good Suffix rule and it is applied regarding
the borders of the pattern. A 𝐛𝐨𝐫𝐝𝐞𝐫 is a substring of 𝑝 that is both a proper suffix and a
proper prefix of 𝑝. Let 𝑡 be the substring of  which is matched to the pattern at some
iteration 𝑖 and we have found a mismatch. We can safely shift the pattern until 𝑡 is aligned
with the rightmost ocurrence of 𝑡 ∈  . See this example:

Example

0 1 2 3 4 5 6 7 8 9 10 11

𝑇 a b c a b c a d a a b c
𝑃 b a d a a a a d a

shift b a d a a a a

Table 2.3: A mismatch occurs comparing c-a. In this case, 𝑡 = ada. We can shift the pattern until it is
aligned with the rightmost occurence of ada, which occurs at index 1.

Notice that this is only possible if  contains at least one other occurrence of 𝑡 . When
it is not the case, we can try a different idea: we can try to match a suffix of 𝑡 with some
prefix of  . Check this example:

Example

0 1 2 3 4 5 6 7 8 9 10 11

𝑇 a b c a b c a d a a b c
𝑃 d a a a d a

shift d a a a d

Table 2.4: In this case, 𝑡 = ada. There is no other occurence of ada in  , but we can align the suffix
da of 𝑡 with the prefix ba of P

So how do we apply the Good Suffix Rule?

6

2 | SINGLE PATTERN STRING MATCHING

We are going to build two tables: 𝑓 and 𝑠. 𝑓 [𝑖] will store the starting index of the widest
border of 𝑝[𝑖 ⋯ |𝑝| − 1]. The table 𝑠[𝑖], on the other hand, will store the shift position for
𝑠[𝑖 ⋯. So, how do we build these tables? Let us build by induction, in decreasing order,
for 𝑖 = 𝑚, we define 𝑓 [𝑖] = 𝑚 + 1. Now, suppose for some index 𝑖 < 𝑚 we have 𝑓 [𝑖] = 𝑗,
let us calculate 𝑓 [𝑖 − 1]. Denote widest border for 𝑝[𝑖 ⋯ |𝑝| − 1] as 𝑥 and let us construct
the widest border for 𝑝[𝑖 − 1⋯ |𝑝| − 1, namely 𝑦. If 𝑠[𝑖 − 1] = 𝑠[𝑗 − 1] then we can define
𝑦 ∶= 𝑠[𝑖 − 1] + 𝑥 . Therefore, 𝑓 [𝑖 − 1] = 𝑗 − 1.
If 𝑠[𝑖 − 1]! = 𝑠[𝑗 − 1], then we set 𝑗 = 𝑓 [𝑗] and try again, while 𝑗 > 𝑚. While doing our
search, whenever we find 𝑠[𝑖] == 𝑠[𝑗] and 𝑠[𝑖 − 1]! = 𝑠[𝑗 − 1] we can determine shift for
𝑠[𝑗 ⋯ |𝑝| − 1] matching and mismatch at at index 𝑗 − 1, so 𝑠[𝑗] = 𝑗 − 𝑖.

2.3.3 Preprocessing

Example

Let 𝑃 = 𝑏𝑎𝑎𝑏𝑎𝑏𝑎. Let’s construct the tables 𝑓 and 𝑠.

The suffix beginning at position 0 is baababa and it has border ba, starting at index 5.
So, 𝑓 [0] = 5
The suffix beginning at position 1 is aababa ant it has border a, starting at index 6. So
𝑓 [1] = 6
The suffix beginning at position 2 is ababa has borders aba, starting at index 4 and b,
starting at index 6. Since aba is the widest, 𝑓 [2] = 4. However, notice that the border aba
cannot be extended to the left, because 𝑃[1] = 𝑎 ≠ 𝑏 = 𝑃[3]. So, 𝑠[4] = 4 − 2 = 2. Also, the
border a cannot be extended either. So, 𝑠[6] = 6 − 2 = 4.
The suffix beginning at position 3 is baba and it has border ba, starting at index 5. Thus,
𝑓 [3] = 5
The suffix beginning at position 4 is aba ant it has border a, starting at index 6. So 𝑓 [4] = 6
The suffix beginning at position 5 is ba and it has no border. So, 𝑓 [5] = 7
The suffix beginning at position 6 is a and it has empty border. Moreover, this border
cannot be extended to the left. Therefore, 𝑓 [6] = 7 and 𝑠[6] = 7 − 6 = 1. Notice that
assigning this way ensure a valid shift.

0 1 2 3 4 5 6

𝑃 b a a b a b a
𝑓 5 6 4 5 6 7 7
𝑠 0 0 0 2 0 4 1

Table 2.5: Tables 𝑓 and 𝑠 of Boyer-Moore Algorithm for 𝑃 = 𝑏𝑎𝑎𝑏𝑎𝑏𝑎.

In the second phase of the Good Suffix heuristic, a part of the matching suffix occurs at
the beginning of 𝑃 . Thus, we have a border of the pattern. So, we can shift it accordingly
to its widest border. We shall determine the widest border of 𝑃 that is contained in every
suffix. At the end of phase 2, all values of 𝑠 are determined.

We start with the widest border of the pattern, which is stored in 𝑓 [0] and change it if

2.3 | BOYER-MOORE

7

the current suffix becomes shorter than 𝑓 [0]. The Program 2.3 shows the initialization of
the Boyer-Moore algorithm.

Program 2.3 Boyer-Moore initialization.

1 function BMinit(P,T) ⊳ return tables 𝑓 and 𝑠
2 𝑖 ∶= |𝑃 |
3 𝑗 ∶= 𝑖 + 1
4 𝑓 [𝑖] ∶= 𝑗
5 ⊳ First phase
6 while 𝑖 > 0
7 while 𝑗 ≤ |𝑃 | and 𝑃[𝑖 − 1] ≠ 𝑃[𝑗 − 1]
8 if 𝑠[𝑗] == 0
9 𝑠[𝑗] ∶= 𝑗 − 𝑖

10 end

11 𝑗 ∶= 𝑓 [𝑗]
12 end

13 𝑖 ∶= 𝑖 − 1
14 𝑗 ∶= 𝑗 − 1
15 𝑓 [𝑖] ∶= 𝑗
16 end

17 ⊳ Second phase
18 𝑗 ∶= 𝑓 [0]
19 for 𝑖 ∶= 0,𝑖 ≤ |𝑃 |, 𝑖 ∶= 𝑖 + 1
20 if 𝑠[𝑖] == 0
21 𝑠[𝑖] = 𝑗
22 end

23 if 𝑖 == 𝑗
24 j = f[j]
25 end

26 end

27 return 𝑓 , 𝑠

2.3.4 Search

For searching patterns, we compare symbols of pattern from right to left with text.
If a match happens, the pattern is shifted accordingly to its widest border. Otherwise,
the shift is determined by the maximum of the values given by the good-suffix and the
bad-character heuristics. The program 2.4 shows the search phase of the Boyer-Moore
Algorithm.

Program 2.4 Boyer-Moore search.

1 function BMsearch(P,T,s,bc) ⊳ return occurrences of 𝑃 in 𝑇 , given tables 𝑠 and 𝑏𝑐.
2 ans ←∅
3 𝑖 ∶= 0
4 while 𝑖 ≤ |𝑇 | − |𝑃 |

cont ⟶

8

2 | SINGLE PATTERN STRING MATCHING

⟶ cont
5 j ←|𝑃| − 1
6 while 𝑗 ≥ 0 and 𝑃[𝑗] == 𝑇 [𝑖 + 𝑗]
7 𝑗 ∶= 𝑗 − 1
8 end

9 if 𝑗 < 0
10 ans ← ans ∪{(𝑖, 𝑖 + |𝑃 | − 1)}
11 𝑖 ∶= 𝑖 + 𝑠[0]
12 end

13 else

14 𝑖 ←max(s[j+1], j−bc[t[i+j]])
15 end

16 return ans

2.3.5 Complexity

The best case occurs when at each attempt the text character compared does not occur
in the pattern and the pattern is shifted. In such case the algorithm runs in (| |/| |).
However, in general 𝑂(|𝑃 ||𝑇 |) comparisons are needed.

2.4 Boyer-Moore-Horspool Algorithm.

Instead of using the bad character and the good suffix heuristics. Horspool Horspool,
1980 proposed a simplified version of the Boyer-Moore algorithm. The idea is comparing
the last character of the pattern  with the last character of text  . If a mismatch occurs,
then we shift the pattern to align it to the rightmost occurrence of the mismatched character.
Otherwise we simply continue comparing the characters of  from right to left.

Example

0 1 2 3 4 5 6 7 8 9 10 11 12

 d b d a c a b c a d a d b
 b c a b

shift b c a b

Table 2.6: In this case, a mismatch occurs comparing c-b. So we shift the pattern to align it with the
next rightmost occurrence of 𝑐 in P

Example

2.4.1 Preprocessing

The preprocessing phase of the algorithm is based on maping for each symbol 𝑠 ∈ ,
the rightmost occurrence of 𝑠 in 𝑝[0 ∶ 𝑚 − 2] i.e, the rightmost occurrence of 𝑠 in the
pattern except the last character. We initialize the table with |𝑝|. Notice that if there is a

2.4 | BOYER-MOORE-HORSPOOL ALGORITHM.

9

0 1 2 3 4 5 6 7 8 9 10 11 12

 d b d b c a b b a d a d b
 a c a b

shift b c a b

Table 2.7: In this case, a mismatch occurs comparing b-a. So we have to shift the pattern to align it to
the rightmost occurrence of b in  . Since there is any, we simply move the pattern past the character
a

character that only occurs at the last index, it will be mapped to |𝑝|. The init function of
BMH algorithm can be done as in program 2.5.

Program 2.5 BMH init function.

1 function BMHinit(, p)
2 ⊳ BMHtable[𝑠] stores the righmost occurence of 𝑆 in 𝑝[0 ∶ 𝑚 − 2]
3 for 𝑠 ∈ 
4 BMHtable[s] = |𝑝|
5 end

6 i ← 0
7 for 𝑐 ∈ 𝑝
8 BMHtable[𝑐] ← i
9 i ← i + 1

10 end

11 end

2.4.2 Search

The search phase is as in the Boyer-Moore algorihtm. We compare the pattern from
right to left with the text and we shift the pattern according to the BMHtable if a mismatch
occurs. Check program 2.6

Program 2.6 BMH search function.

1 function BMHsearch(BMHTable)
2 𝑖 ← 0
3 while 𝑖 ≤ |𝑇 | − |𝑃 |
4 while 𝑗 ≥ 0 and 𝑃[𝑗] == 𝑇 [𝑖 + 𝑗]
5 j ← j − 1
6 if 𝑗 < 0
7 ans ← ans ∪{𝑖}
8 i ← i + |P| − 1
9 i ← i − BMHtable[𝑇 [𝑖]]

10 end

11 end

12 return ans

10

2 | SINGLE PATTERN STRING MATCHING

2.4.3 Example 1

Let 𝑝 ∶= 𝐴𝐶𝑇𝐺 be a pattern and 𝑇 ∶= 𝐴𝐴𝐴𝐶𝐶𝑇𝐴𝐺𝐴𝐶𝑇𝐺𝐴 be a text. Let’s build the
Bad-Character Table for the characters of 𝑝, as we can see in 2.8

c value
A 4 − 0 − 1 = 3
C 4 − 1 − 1 = 2
T 4 − 2 − 1 = 1
G 4 (last character)
* 4

Table 2.8: Bad-Character table for 𝑝 ∶= 𝐴𝐶𝑇𝐺

Now, let’s use the BMH Algorithm to find all the ocurrences of 𝑝 in 

At iteration i = 0, we compare the character G with C, and since 𝐺! = 𝐶 we shift the
pattern by 𝐵𝑀𝐻𝑇𝑎𝑏𝑙𝑒[𝐺] = 4.

𝐴𝐴𝐴𝐶𝐶𝑇𝐴𝐺𝐴𝐶𝑇𝐺𝐴
𝐴𝐶𝑇𝐺

At iteration i = 1, we compare the character G with G, since it matches we proceed to
compare T with A. Since it doesn’t match, we shift the pattern by 𝐵𝑀𝐻𝑇𝑎𝑏𝑙𝑒[𝐺] = 4.

𝐴𝐴𝐴𝐶𝐶𝑇𝐴G𝐴𝐶𝑇𝐺𝐴
𝐴𝐶𝑇G

At iteration i = 2, finally all characters of the pattern have matched. We have found a
match at index 8. We shift the pattern by 4 (its size), which ends the algorithm.

𝐴𝐴𝐴𝐶𝐶𝑇𝐴𝐺ACTG𝐴
ACTG

2.4.4 Example 2

Let 𝑝 ∶= 𝑎𝑏𝑟𝑎 be a pattern and 𝑇 ∶= 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 be a text. Let’s build the Bad-
Character Table for the characters of 𝑝, as we can see in table 2.9

At iteration i = 0, we find a match and shift the pattern by 1.

2.4 | BOYER-MOORE-HORSPOOL ALGORITHM.

11

c value
a 4 − 0 − 1 = 3
b 4 − 1 − 1 = 2
r 4 − 2 − 1 = 1
* 4

Table 2.9: Bad-Character table for 𝑝 ∶= 𝑎𝑏𝑟𝑎

abra𝑐𝑎𝑑𝑎𝑏𝑟𝑎
abra

At iteration i = 1, we compare the characters c with a, which doesn’t match. We shift
the pattern by BMHTable[a] = 3

𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎
𝑎𝑏𝑟𝑎

At iteration i = 2, we compare the characters a with a, which matchs, and proceeds to
compare d with r. Since it doesn’t match we shift the pattern by BMHTable[a] = 3.

𝑎𝑏𝑟𝑎𝑐𝑎𝑑a𝑏𝑟𝑎
𝑎𝑏𝑟a

At iteration i = 3, we find another match. We shift the pattern by 1, which ends the
algorithm.

𝑎𝑏𝑟𝑎𝑐𝑎𝑑abra

abra

2.4.5 Complexity

The time complexity of BMHinit is given by the loops on lines 3 and 7, so its time
complexity is 𝑂( + |𝑃|) and the space complexity is the size of the BMHtable, which is
𝑂(|𝐴|).

The BMHsearch does not improve the performance of heuristics from BMsearch and it
is just a simplified version. The time complexity of BMHsearch is given by the number
of iterations on line 5. Like in BMsearch, the worst case is (| || |) and the best case is
when the first comparison on line 4 holds false for every character and then the algorithm
performs just 𝑂(|𝑇 |/|𝑃 |) comparisons. The space complexity of BMHsearch is (1), since
we do not need any additional memory beside loop variables.

12

2 | SINGLE PATTERN STRING MATCHING

2.5 KMP Algorithm

The Knuth-Morris-Pratt Algorithm Knuth et al., 1977 solves the SPSM problem by
constructing an auxiliary function called Prefix Function in order to find the occurrences
of the pattern without performing any strings comparisons.

2.5.1 Prefix Function

Let 𝑠 be a string of length 𝑛. For each integer 𝑖 ∈ {0⋯𝑛 − 1} define 𝑚 ∶= 𝑠[0⋯ 𝑖]. The
Prefix function for 𝑠 is an array 𝜋 such that 𝜋[𝑖] is the length of the longest proper prefix
of 𝑚 which is also a suffix of 𝑚 ending at index 𝑖.

That is,

𝜋[𝑖] = 𝑚𝑎𝑥𝑘=0⋯𝑖{𝑘 ∶ 𝑠[0⋯ 𝑘 − 1] = 𝑠[𝑖 − (𝑘 − 1)⋯ 𝑖]}

2.5.2 Example

The prefix function for the string "abracadabra" is [0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 4].

2.5.3 Proposition 1

Let 𝑠 be a string of length 𝑛 > 1. For each integer 𝑖 ∈ {0⋯𝑛 − 2} we have 𝜋[𝑖 + 1] ≤
𝜋[𝑖] + 1.

Proof. For the sake of contradiction, suppose there is an integer 𝑖 such that 𝜋[𝑖+1] > 𝜋[𝑖]+1.
Then, there is a suffix of 𝑚 ∶= 𝑠[0⋯ 𝑖 +1] of length 𝜋[𝑖 +1], we remove the last character of
𝑚 yielding the string 𝑚′ ∶= 𝑠[0⋯ 𝑖] of length 𝜋[𝑖 + 1] − 1, which, by hypothesis, is greater
than 𝜋[𝑖]. This contradicts the definition of 𝜋[𝑖].

2.5.4 Proposition 2

If 𝑖 > 0, 𝑠[𝑖 + 1] = 𝑠[𝜋[𝑖]], then 𝜋[𝑖 + 1] = 𝜋[𝑖] + 1

Proof. By definition of 𝜋 , we now the prefix that starts at index 𝑖 has largest border
𝑏 ∶= 𝑠[0⋯𝜋[𝑖] − 1] with length 𝜋[𝑖]. The suffix for 𝑏 is 𝑠[𝑖 − 𝜋[𝑖] + 1⋯ 𝑖]. So, s[pi[i]] is
the next character after 𝑏 and 𝑠[𝑖 + 1] is the next character of the suffix of 𝑏. Therefore, if
𝑠[𝑖 + 1] = 𝑠[𝜋[𝑖]], then 𝜋[𝑖 + 1] = 𝜋[𝑖] + 1.

2.5.5 Optimizations

With proposition 2, we can calculate 𝜋[𝑖 + 1] from 𝜋[𝑖] if 𝑠[𝑖 + 1] = 𝑠[𝜋[𝑖]]. If that is not
the case, then we find the largest 𝑗 < 𝜋[𝑖] such that the prefix property holds for j and check
if 𝑠[𝑖 + 1] = 𝑠[𝑗]. Notice that such 𝑗 is in fact 𝜋[𝑖 − 1]. Therefore, if 𝑠[𝑖 + 1] = 𝑠[𝜋[𝑖 − 1]], we
assign 𝜋[𝑖 +1] = 𝜋[𝜋[𝑖 −1]]+1, otherwise we set 𝑗 ∶= 𝜋[𝑖 −1] and repeat the process.

2.5 | KMP ALGORITHM

13

2.5.6 Preprocessing

With the optimizations, we can construct the final algorithm. Check Program 2.7.

Program 2.7 KMP Algorithm prefix function

1 function KMPPrefix(p)
2 𝑖 ← 0
3 𝜋[0] = 0
4 for 𝑖 in {1⋯ |𝑝| − 1}
5 j ←𝜋[𝑖 − 1]
6 while 𝑗 > 0 and 𝑠[𝑖] ≠ 𝑠[𝑗]
7 j ←𝜋[𝑗 − 1]
8 end while

9 if 𝑠[𝑖] = 𝑠[𝑗]
10 j ← j+1
11 𝜋[𝑖] = 𝑗
12 end for

13

14 return 𝜋

2.5.7 Search

So, how do we perform searches? Let 𝑇 be a text and 𝑝 a pattern. Define 𝑠 ∶= 𝑝+ ∗ +𝑇 ,
where ∗ is an arbitrary character such that there is no occurrence of in 𝑇 neither in 𝑝. We
build the prefix function for 𝑠. Then, if there is an integer 𝑖 > 𝑛 such that 𝜋[𝑖] = 𝑛, then
there is an occurrence of 𝑝 in 𝑇 at the index 𝑖 − 2𝑛.

Proof. By the definition of 𝑠, if 𝑖 > 𝑛, then 𝑠[𝑖] is a character of  . By the definition of 𝑝𝑖,
if 𝜋[𝑖] = 𝑛, then there the prefix of 𝑠 of size 𝑛 coincides with 𝑠[𝑖 − (𝑛 + 1) − 𝑛 + 1 = 𝑖 − 2𝑛,
but a prefix of 𝑠 of size 𝑛 is 𝑝, by construction. Therefore, there is an occurrence of 𝑝 in 
at the index 𝑖 − 2𝑛.

The program 2.8 shows the search phase of the KMP Algorithm

Program 2.8 KMP Search

1 function KMPPrefix(p, 𝑇 , 𝜋)
2 𝑧 ∶= 𝑝+ ∗ +𝑡
3 for 𝑣𝑎𝑙𝑢𝑒 ∈ 𝜋 do

4 if value = |𝑝|
5 match found
6 end for

7 end

14

2 | SINGLE PATTERN STRING MATCHING

2.5.8 Complexity

From proposition 1, the prefix function, at each iteration, can increase by at most
1. Therefore, the While loop in line 7 of program 2.7 can perform at most 𝑛 iterations
at total since it is limited by the value of 𝜋 . Thus, the program 2.7 has (| |) of time
complexity and (| |) of space complexity. The Search phase (program 2.8) is (|𝑇 |) of
time complexity and (1) of space complexity.

Therefore, the KMP algorithm is (| |) of time complexity and (| |) of space com-
plexity.

2.5.9 Example 1

Let  ∶= 𝐷𝐴𝐶𝐷𝐴𝐶𝐴𝐶 and 𝑝 ∶= 𝐴𝐶𝐴𝐶 . Let’s use the KMP Algorithm to find all
occurrences of 𝑝 in  . First, let’s construct the prefix function for  + * + 𝑝 which is
ACAC*DACDACAC.

For i=0, 𝑠[0⋯ 𝑖] = 𝐴. We have no borders. So, 𝜋[0] = 0

For 1=1, 𝑠[0⋯ 𝑖] = 𝐴𝐶 . Again, there are no borders. So, 𝜋[1] = 0

For 1=2, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴. We have border A. So, 𝜋[2] = 1

For 1=3, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 . We have borders A and AC. So, 𝜋[3] = 2

For 1=4, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗. We have no borders. So, 𝜋[4] = 0

For 1=5, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷. We have no borders. So, 𝜋[5] = 0

For 1=6, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴. We have border A. So, 𝜋[6] = 1

For 1=7, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴𝐶 . We have borders A and AC. So, 𝜋[7] = 2

For 1=8, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴𝐶𝐷. We have no borders. So, 𝜋[8] = 0

For 1=9, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴𝐶𝐷𝐴. We have border A. so 𝜋[9] = 1

For 1=10, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴𝐶𝐷𝐴𝐶 . We have borders A and AC. So, 𝜋[10] = 2

For 1=11, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴𝐶𝐷𝐴𝐶𝐴. We have borders A, AC and ACA. So,
𝜋[11] = 3

For 1=12, 𝑠[0⋯ 𝑖] = 𝐴𝐶𝐴𝐶 ∗ 𝐷𝐴𝐶𝐷𝐴𝐶𝐴𝐶 . We have borders A, AC and ACAC. So,
𝜋[12] = 4

Thus, the Table 2.10 shows the prefix function for  ∶= 𝐷𝐴𝐶𝐷𝐴𝐶𝐴𝐶 and 𝑝 ∶=
𝐴𝐶𝐴𝐶 .

Now, for the searching phase we just have to iterate over the values of 𝜋 and check if it’s
equal to |𝑝| = 4. In this case, at 𝑖 = 12 we have found a match at index 𝑖 − 2 ∗ |𝑝| = 12 − 8 = 4
of  .

2.6 | SHIFT-OR ALGORITHM

15

i 𝜋[𝑖]
0 0
1 0
2 1
3 2
4 0
5 0
6 0
7 0
8 0
9 1
10 2
11 3
12 4

Table 2.10: Prefix function for  ∶= 𝐷𝐴𝐶𝐷𝐴𝐶𝐴𝐶 and 𝑝 ∶= 𝐴𝐶𝐴𝐶 .

2.6 Shift-Or Algorithm

The Shift-Or Algorithm Baeza-Yates and Gonnet, 1989 uses bitwises techniques to
solve the Pattern Matching Problem. Using the same principles of the previous algorithms,
we have a preprocessing phase and a search phase. However, we don’t perform any string
comparisons, instead the algorithm will be based on the Shift and Or bitwise operators,
which explains its name.

2.6.1 Bitmask

Let 𝑝 ∶= 𝑝0 ⋯𝑝𝑛 be a pattern of size 𝑛. The Shift-Or Algorithm constructs a hash table
mask that maps each character 𝑐 of 𝑝 to a bitmask 𝑑 = 𝑑𝑛 ⋯𝑑1, where 𝑑𝑖 = {0, 1}. mask[c]
has I-th bit set to 0 if, and only if, 𝑝𝑖 = 𝑐. For instance, for the pattern 𝑎𝑏𝑟𝑎, we have the
bitmask table as in 2.11

character 𝑑1 𝑑2 𝑑3 𝑑4 bitmask (𝑑4⋯𝑑1)

a 0 1 1 0 0110
b 1 0 1 1 1101
r 1 1 0 1 1011
* 1 1 1 1 1111

Table 2.11: Bitmask table for 𝑝 ∶= 𝑎𝑏𝑟𝑎

2.6.2 Matching

With the table mask created, we can find the occurrences of the pattern 𝑝 in the text 𝑇
with the following algorithm:

16

2 | SINGLE PATTERN STRING MATCHING

1. We start with a bitmask 𝜙 with ¬1 i.e, the bitwise negation of 1 (all bits set to 1
except for 20).

2. For each character 𝑐 of  , we perform the OR bitwise operator with 𝜙 and 𝑚𝑎𝑠𝑘[𝑐]
and shift 𝑝ℎ𝑖 to the left. Thus, we apply the assignment:

(𝜙|𝑚𝑎𝑠𝑘[𝑐]) << 1

3. If at any step, the 𝑑𝑚 bit is set to 1, then a match was found at index 𝑖 − 𝑛 + 1.

2.6.3 Algorithm

We are going to combine the preprocessing phase with the matching phase to build an
algorithm on the fly. To do so, we start constructing the 𝜙 table, and if at any moment, we
have found that the 𝑑𝑚 bit in mask is set to 0, the we have found a match.

The program 2.9 shows the Shift-Or Algorithm.

Program 2.9 Shift-Or Algorithm

1 function shiftOr(p, 𝑇)
2 ⊳ mask table is initialized with mask with all bits set to 1
3 ⊳ 𝜙 is initialized with mask with all bits set to 1
4 i ← 0
5 while i < |𝑝| do

6 c ← p[i]
7 mask[c] = mask[c] & −(2 ∗ 10𝑖)
8 i ← i + 1
9 end while

10 for 𝑐 ∈  do

11 𝜙 ← R | mask[c]
12 𝜙 ← R << 1
13 if (R & (2 ∗ 10𝑚)) = 0
14 match found
15 end for

16 end

2.6.4 Example 1

Let 𝑝 = 𝑎𝑏𝑟𝑎 be a pattern and 𝑇 = 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 a text. Let’s use the Shift-Or algorithm
to find the occurrences of 𝑝 in  . For this, we use the mask table 2.11

We start with 𝜙 = 11110.

Then, we have the execution trace of the algorithm in table 2.12.

As we can see, we have found matches at iteration 3 and 10.

2.7 | TRIE DATA STRUCTURE

17

𝑖 𝜙 c 𝑚𝑎𝑠𝑘[𝑐] 𝜙|𝑚𝑎𝑠𝑘[𝑐] (𝜙|𝑚𝑎𝑠𝑘[𝑐]) << 1)

0 11110 a 10110 11110 11100
1 11100 b 11101 11101 11010
2 11010 r 11011 11011 10110
3 10110 a 10110 10110 01100
4 01100 c 11111 11111 11110
5 11110 a 10110 11110 11100
6 11100 d 11111 11111 11110
7 11110 a 10110 11100 11100
8 11100 b 11101 11101 11010
9 11010 r 11011 11011 10110
10 10110 a 10110 10110 01100

Table 2.12: Execution trace of the Shift-Or Algorithm for 𝑝 = 𝑎𝑏𝑟𝑎 and 𝑇 = 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎

2.6.5 Example 2

Let 𝑝 = 𝐴𝐶𝑇𝐺 be a pattern and 𝑇 = 𝐴𝑇𝐴𝐴𝐶𝑇𝐺𝑇𝐶𝐴 a text. Let’s use the Shift-Or
algorithm to find the occurrences of 𝑝 in  .

First, we generate the bitmask table, as we can see in table 2.13.

𝑐 𝑏1𝑏2𝑏3𝑏4 𝑏𝑖𝑡𝑚𝑎𝑠𝑘[𝑐]

A 0111 1110
C 1011 1100
T 1101 1011
G 1110 0111
* 1111 1111

Table 2.13: Bitmask table for 𝑝 = 𝐴𝐶𝑇𝐺

Next, starting with 𝜙 = 11110, the table 2.14 shows the execution trace of the Shift-Or
Algorithm for this input.

As we can see, we have found a match at index 3 at iteration 6.

2.7 Trie Data Structure

The Trie Data Structure is one of the most useful data structure for solving string
problems. It allows us to perform pattern matching by constructing a tree of characters
nodes. Moreover, the Aho-Corasick Algorithm is fundamentally based on the Trie Data
Structure. So, we must study it first.

A trie is a tree of characters that encode a set of strings. A path from root to a node
in the tree represents a string. The figure 2.1 shows the Trie Data Structure for the set of
strings  = {𝑎𝑑𝑎, 𝑎𝑏𝑐, 𝑐𝑏𝑎, 𝑎𝑑𝑑, 𝑎𝑏𝑟𝑎}. Notice that the root is a special node, and it is not
represented by any character. Also, for every path from root to a node colored in red, the

18

2 | SINGLE PATTERN STRING MATCHING

𝑖 𝜙 c 𝑚𝑎𝑠𝑘[𝑐] 𝜙|𝑚𝑎𝑠𝑘[𝑐] (𝜙|𝑚𝑎𝑠𝑘[𝑐]) << 1)

0 11110 A 11110 11110 11100
1 11100 T 11011 11111 11110
2 11110 A 11110 11110 11100
3 11100 A 11110 11110 11100
4 11100 C 11101 11101 11010
5 11010 T 11011 11011 10110
6 10110 G 10111 10111 01110
7 01110 T 11011 11111 11110
8 11110 C 11101 11111 11110
9 11110 A 11110 11110 11100

Table 2.14: Execution trace of the Shift-Or Algorithm for 𝑝 = 𝐴𝐶𝑇𝐺 be a pattern and 𝑇 =
𝐴𝑇𝐴𝐴𝐶𝑇𝐺𝑇𝐶𝐴

concatenation of the characters represented in the nodes will result in a string of 𝑆. The
nodes colored in red are called "word nodes", and they are special because they represent
ending characters of a string in  . The purpose of this shall be clarified when we discuss
how to perform searches.

Figure 2.1: Trie Data Structure for the set of strings  = {𝑎𝑑𝑎, 𝑎𝑏𝑐, 𝑐𝑏𝑎, 𝑎𝑑𝑑, 𝑎𝑏𝑟𝑎}.

The trie node can be defined as:

Program 2.10 Trie node

1 struct trieNode
2 children ← (𝑐 ∈  → 𝑇𝑟𝑖𝑒𝑁𝑜𝑑𝑒) ⊳ Character map function
3 word ← false

2.7 | TRIE DATA STRUCTURE

19

2.7.1 Construction

To construct the Trie Data Structure from the set of patterns, we start with the empty
trie, which is the one with only the root node, and insert each string of 𝑃 into the trie.
Therefore, the construction is simply a loop of insertions. Now, let’s describe how to insert
a string 𝑠 in the trie.

We are going to insert each character of 𝑠 separately. Starting from the root node, we
check if there is already a child representing the first character of 𝑠. Is so, then we simply
move to this node. Otherwise we create a new node and move to it. After moving to the
next node, we also proceed to the next character in 𝑠 and repeat the process. After adding
the last character, we mark its representative node as a word node.

Example

In the figure 2.1, we have a trie for the set of strings  = {𝑎𝑑𝑎, 𝑎𝑏𝑐, 𝑐𝑏𝑎, 𝑎𝑑𝑑, 𝑎𝑏𝑟𝑎}.
Now let us add the string abbd. We start at the root (node 0) and considering the character
a. Since there is already a node from node 0 to a node with label a, the node 1, so we move
to node 1 start considering the next character in abbd, which is b.
Again, there is a child of node 1 with label b, the node 4. So we move to node 4 and start
considering the next character in abbd, which is b.
From node 4, there is no child with label b, so we create a new node, namely node 12, and
move to it. We now consider the next character in abbd, which is d.
From node 12, there is no child with label d. So we create a new node, namely node 13, and
move to it. Since this is the last character of abbd, we mark this node as a word node.

Here, the code for inserting a string in the trie is given:

Program 2.11 Trie insert function.

1 function trieInsert(root, s)
2 pointer ← root
3 for 𝑐 ∈ 𝑠
4 if root.children[c] is not defined
5 root.children[c] ← TrieNode(c)
6 pointer ← root.children[c]
7 end

8 pointer.word ← true

9 return ans

2.7.2 Pattern Searching

We can use the Trie Data Structure to perform pattern searches. The idea is to build a
trie of all suffixes of the text  and use it to check if there is a occurence of a pattern 𝑝
in 𝑇 . We process each character 𝑐 in the pattern 𝑝 and, starting with the root, we follow
the edges of the trie for each character. if, at any moment, there is no such edge, then the
pattern doesn’t occur in  . If we find a leaf, we have found a match.

20

2 | SINGLE PATTERN STRING MATCHING

Example 1

Let  = abracadabra, and 𝑝 = 𝑎𝑏𝑟𝑎. First, we generate all suffixes of 𝑇 and build a trie
with them. The table shows all suffixes of 𝑇 , we use $ to denote the ending of 𝑇 .

i suffix
0 abracadabra$
1 bracadabra$
2 racadabra$
3 acadabra$
4 cadabra$
5 adabra$
6 dabra$
7 abra$
8 abra$
9 bra$
10 ra$
11 a$
12 $

Table 2.15: The suffixes of abracadabra

Then, we build a trie with all suffixes of  , as we can see in the figure 2.2

Figure 2.2: Trie of suffixes for  = abracadabra

Now, we are going to iterate over each character of the pattern 𝑝 while we move
through the Trie. Starting at the root, we check if there is an edge with label corresponding
to the next character in 𝑝. If so, then we follow this edge and repeat. If, at any moment
there is no such edge, we conclude that the pattern does not exist in 𝑇 and return. If all
characters have been processed, then we print the suffix list of the current node, which
yields the occurences of 𝑝 in 𝑇 .

We start at the root. The next character in 𝑝 is ’a’, so we go to node 1.

2.7 | TRIE DATA STRUCTURE

21

The next characters are ’b’, ’r’ and ’a’, we go to node 6.

Finally, the next character is $, we go to node 14. Since this is a word node, we have
found a match and we print the list of indices stored in this vertex.

Example 2

Let 𝑝 = 𝑎𝑏𝑐 be a pattern and  = 𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑐𝑏𝑎𝑎𝑏𝑐𝑐 be a text. Let us generate all suffixes
of 𝑇 , as we can see in table XX.

i suffix
0 ababbabcbaabcc$
1 babbabcbaabcc$
2 abbabcbaabcc$
3 bbabcbaabcc$
4 babcbaabcc$
5 abcbaabcc$
6 bcbaabcc$
7 cbaabcc$
8 baabcc$
9 aabcc$
10 abcc$
11 bcc$
12 cc$
13 c$
12 $

Table 2.16: The suffixes of 𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑐𝑏𝑎𝑎𝑏𝑐𝑐

Then, we build a Trie of all suffixes of  , see figure 2.3

Figure 2.3: Trie of suffixes for  = 𝑎𝑏𝑎𝑏𝑏𝑎𝑏𝑐𝑏𝑎𝑎𝑏𝑐𝑐

Finally, we process each character of 𝑝 and follow the edges of the Trie.

22

2 | SINGLE PATTERN STRING MATCHING

Complexity

The complexity of this algorithm is given by the preprocessing phase and the searching
phase. We can build the Trie in (| |2) by generating all suffixes of  . And then the search
phase is simply iterating over each character of 𝑃 and following edges, which can be done
in (|𝑃 |).

23

Chapter 3

Multiple Pattern String

Matching

3.1 Introduction

In this chapter, we discuss algorithms to solve the following problem: Given a text 
and a set of patterns  , where all symbols are from an alphabet , find all occurrences of
all patterns of  in  . The algorithms we are going to study in this chapter have several
similarities with the previous algorithms. Thus, it’s very important to understand those
algorithms first.

3.2 Aho-Corasick

The Aho-Corasick algorithm Aho and Corasick, 1975 is an extension of the Trie Data
Structure to deal with multiple patterns. We construct an automaton by constructing a
Trie from the set of patterns and then adding some addional links, the suffix link and the
exit link.

3.2.1 Preprocessing

The preprocessing of the Aho-Corasick is quite different from the other algorithms.
We are going to describe how to construct a finite deterministic automaton from the
Trie Data Structure. Suppose we have a set of patterns  and a trie  for the set of strings
 . We construct an automaton in which every vertice 𝑣 of  is a state, and for every edge
𝑒 of the trie, we have a transition according to the corresponding letter. Notice that this
does not define an automaton yet, since we have to define a transition from every letter
from the alphabet. If there is no corresponding edge in the trie, then we have to go into
some state. Let us describe formally how the Aho-Corasick deals with this problem.

Suppose we are currently in some state 𝑝, obtained from some vertice 𝑣 in the trie.
Define the string 𝑠[𝑣] corresponding to 𝑣 as the string obtained by the character nodes
from the path from the root to the vertice 𝑣. Suppose we are processing a character 𝑐, if

24

3 | MULTIPLE PATTERN STRING MATCHING

there is an edge in the Trie from 𝑣, with label 𝑐, then we can go over this edge and get the
corresponding vertex and new state. Otherwise, we find the state corresponding to the
longest proper suffix of the string 𝑠[𝑣], and try to perform the transition from there.

3.2.2 Suffix Link

A suffix link is an edge that leads to the proper suffix of the string 𝑠[𝑣]. We build
such links recursively. The base case is the root of the trie, in which the suffix link will
point to itself. The general case we have some vertex 𝑣, and there is no transition from 𝑣,
with letter 𝑐. Then, we can go to the ancestor 𝑝 of 𝑣, follow its suffix link, which is already
defined by induction, leading to some vertex 𝑢, and try to perform the transition with
the letter 𝑐 from 𝑢. If there is no such edge, we repeat until we reach the root, our base
case. Therefore, we can build such links in linear time proportional to the height of the
Trie.

Example

Let  = 𝑎𝑏𝑐𝑎𝑏𝑑𝑎 and  = [𝑏𝑐, 𝑏𝑑, 𝑎𝑏𝑐, 𝑎𝑏𝑑]. Let’s construct the Aho-Corasick data
structure. Let’s add the strings bc, bd, abc and abd to the Trie and add its suffix links (See
figure 3.1). The dashed arrows represents suffix links and the red nodes represents word
nodes.

Figure 3.1: Aho Corasick Data Structure for  = 𝑎𝑏𝑐𝑎𝑏𝑑𝑎 and  = [𝑏𝑐, 𝑏𝑑, 𝑎𝑏𝑐, 𝑎𝑏𝑑].

The node 1 represents the string "a". Since there are any proper suffixes of "a", we just
add a suffix link pointing to the root.
The node 2, represents the string "b". Again, there are any proper suffixes, so we add a
suffix link pointing to the root.
The node 3 represents the string "ab", the only proper suffix of "ab" is "b", which exists in
the trie (node 2). So we add a suffix link pointing to node 2.
The node 4 represents the string "bc", the only proper suffix of "bc" is "c", which doesn’t

3.2 | AHO-CORASICK

25

exists in the trie. So we just a suffix link pointing to the root. Since "bc" is a pattern, we
mark this node as a word node.
The node 5 represents the string "bd", its only proper suffix is "d", which doesn’t exists in
the trie. So we add a suffix link pointing to the root.
The node 6 represents the string "abc", its proper suffixes are "c", and "bc". The longest one
is "bc", which exists in the Trie (node 4). So we add a suffix link pointing to node 4. Since
"abc" is a pattern, we mark this node as a word node.
The node 7 represents the string "abd", its proper suffixes are "d" and "bd". The longest one
is "bd", which exists in the Trie (node 5). So we add a suffix link pointing to node 5. Since
"abd" is a pattern, we mark this node as a word node.

3.2.3 Search

So, how do perform searches? We iterate over the text  and we perform the transitions
for every letter, starting from the root. If the next letter exists in the Trie, we simply go
over its edge. Otherwise we must follow the suffix link and try again. Whenever we pass
through a word node, we print the corresponding match.

Example

In the previous example,  = 𝑎𝑏𝑐𝑎𝑏𝑑𝑎 and  = [𝑏𝑐, 𝑏𝑑, 𝑎𝑏𝑐, 𝑎𝑏𝑑]. We start at the root,
and try to perform the transition to letter ’a’, moving to node 1.
The next letter is ’b’, so we move to node 3. The next letter is ’c’, so we move to node 6.
Node 6 is word node, so we print its corresponding match which is "abc".
The next letter is ’a’. There is no edge from the node 6 to a node with the letter ’a’, so we
go over its suffix link and move to node 4 and try to perform the transition from there.
Node 4 is a word node, so we print the pattern "bc". However, again there is no edge to a
character ’a’, so we go over its suffix link and move to node 0 (the root) and perform the
transition to node 1.
The next letter is ’b’, so we move to node 3. The next letter is ’d’, so we move to node 7.
Node 7 is a word node, so we print the pattern "abd".
The next letter is ’a’. Since there is no transition to a node with letter ’a’ from the node 7,
we go over its suffix link (which points to the root) and perform the transition to node 1,
which ends the search.

3.2.4 Exit Links

How do we verify the matches with this automaton? It is clear that whenever we reach
a leaf vertex 𝑣, then the string 𝑠[𝑣] is a match. But, there may be one, or several other
matches. If we reach a leaf vertex and move along the suffix links, then there will be a
match for every leaf that we find. To speed up this process of finding new matches, the
Aho-Corasick also creates another type of link: the exit link, which is simply the nearest
leaft vertex that is reachable using suffix links. Again, we can construct such links in a
recursive way.

26

3 | MULTIPLE PATTERN STRING MATCHING

Example

Let  = 𝑎𝑏𝑐𝑑 and  = [𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑𝑒, 𝑑]. The next figure shows the Aho-Corasick
data structure with just the suffix links.

Figure 3.2: Aho Corasick Data Structure for  = 𝑎𝑏𝑐𝑑 and  = [𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑𝑒, 𝑑].

Now let us use the automaton to find matches. We start at root (node 0). The first letter
in  is ’a’. So we move to node 1. The next character is ’b’, so we move to node 3. Since
node 3 is a word node, we print the match "ab". The next character is ’c’, so we move to
node 4. Again, the node 4 is a word node, so we print the match "abc". The last character
is ’d’, so we move to node 5 and we finish our search. However, the pattern ’d’ was not
found. We can fix this problem by adding the exit links.

The next figure shows the data structure with the exit links added. Now, for every
character, we must check its exit link, if it points to a leaf node, then we have found a
match! In the previous case, the node 5 now has a exit link to node 2, which is a word
node and the pattern "d" can now be found.

3.2.5 Final Algorithm

As some of the previous algorithms, the Aho-Corasick Algorithm is also composed
of two phases: the build phase and the search phase. During the build phase, we build
the suffix and exit links, which will be implemented using arrays. The build phase can be
decomposed in two sub-phases:

• We build the trie by adding all characters of all patterns. In this step, we build the
array go, which will be used to determine the next state in the automaton, and
start building the array exit, which will represent a map from a state to a bitmask
representing the exit links.

3.2 | AHO-CORASICK

27

Figure 3.3: Aho Corasick Data Structure, now with exit links added, for  = 𝑎𝑏𝑐𝑑 and  =
[𝑎𝑏, 𝑎𝑏𝑐, 𝑎𝑏𝑐𝑑𝑒, 𝑑].

• We then use a queue data structure to build the suffix links and finishing building
the exit links.

The algorithm 3.1 shows the build phase of the Aho-Corasick algorithm.

Program 3.1 Aho-Corasick build phase

1 function build()
2 ⊳ exit[state] will map state to a bitmask representing the index of patterns reachable using

exit links
3 ⊳ go[state][c] will represent the new state obtained from state following the character c edge
4 ⊳ suffix[state] will represent the new state obtained from state following the suffix link
5 count ← 0 ⊳ Will be used to track the index of patterns
6 for 𝑝 ∈ 
7 currentState ← 0
8 for 𝑐 ∈ 𝑝
9 if go[currentState][c] is ∅

10 go[currentState][c] ←new state

11 currentState ← go[currentState][c]
12 end

13 ⊳ Here we set the bit representing the pattern 𝑝 in the final state from previous loop
14 exit[currentState] |= (1 << count)
15 count ← count + 1
16 end

17 return exit, go, suffix

Finally, the algorithm 3.2 shows the search phase of the Aho-Corasick algorithm. Here,
we use an auxiliary function called next, which will be used whenever we are have found

28

3 | MULTIPLE PATTERN STRING MATCHING

no transition from a particular state with letter c and we have to traverse the suffix links
to keep trying.

Program 3.2 Aho-Corasick Search Phase

1 function next(go, currentState, c)
2 while go[currentState][c] is ∅
3 currentState = suffix[currentState]
4 end

5 return go[currentState][c]
6

7 function search( ,  , exit, go, suffix)
8 currentState ← 0
9 for 𝑐 ∈ 

10 currentState ← next(currentState, c)
11

12 ⊳ One or several matches found.
13 if out[currentState] is not ∅
14 count ← 0
15 for 𝑝 ∈ 
16 if (out[currentState] & (1<<count)
17 match found
18 count ← count + 1
19 end

20 end

3.2.6 Complexity

The build phase of the Aho-Corasick algorithm is (| |) of time-complexity. Now, for
the search phase, we process each character 𝑐 of  and we have to check for matches.
Therefore, the time-complexity of the Aho-Corasick algorithm is ( + |𝑎𝑛𝑠|), where |𝑎𝑛𝑠|
is the number of matches found. For memory, we use (||| |), where || is the size of
the alphabet.

3.3 Wu-Manber

The Wu-Manber algorithm Wu and Manber, 1994 is mainly an extension from the
Boyer-Moore algorithm to deal with multiple patterns. As with the other algorithms, we
have a preprocessing phase of building some tables and then a search phase. We are going
to build three tables, a SHIFT table, similar to the Boyer-Moore shift table, and a HASH
table and PREFIX tables, which uses some heuristics to check matches.

3.3.1 Polynomial rolling hash

Before we study the Wu-Manber algorithm, we present a string hash technique which
is called the polynomial rolling hash of a string 𝑠. This hash technique will be used in the
Wu-Manber algorithm.

3.3 | WU-MANBER

29

Let 𝑝 and 𝑚 be fixed positive numbers, the Polynomial Rolling Hash of a string 𝑠
is

ℎ𝑎𝑠ℎ(𝑠) = 𝑠[0] + 𝑠[1] ∗ 𝑝 + 𝑠[2] ∗ 𝑝2 + ⋯ + 𝑠[𝑛 − 1] ∗ 𝑝𝑛−1 mod 𝑚

3.3.2 Preprocessing

Suppose we have a set of patterns  . Let 𝑚 be the minimum length of a pattern, i.e
𝑚 is the minimum size |𝑝| for all 𝑝 ∈  . Also, let 𝑀 be the total size of the patterns and 𝑐
the size of the alphabet. We are going to consider the first 𝑚 characters of each pattern in
order to build the tables. Also, we are going to consider a sliding window in the text 𝑇 ,
of size 𝐵, where 𝐵 = 𝑙𝑜𝑔𝑐2𝑀 . To build the SHIFT table, we consider each pattern 𝑝 ∈ 
and each substring 𝑠 of size 𝐵 of 𝑝. 𝑆𝐻𝐼𝐹𝑇 [𝑠] will be the largest possible value for a shift.
Let 𝑇𝑖 the text window of size B obtained at iteration 𝑖, i.e, 𝑇𝑖 = 𝑇𝑖 ⋯𝑇𝑖+𝐵−1. We have two
cases:

• 𝑇𝑖 occurs in some pattern, i.e, 𝑇𝑖 is a substring of one or more patterns in 

• 𝑇𝑖 does not occur in any pattern 𝑝 ∈ 

If case 1 holds, then we have to shift the sliding window to allow for all occurrences of
𝑇𝑖 be checked. Therefore, similar to the Boyer-Moore algorithm, we find the rightmost
occurrence of 𝑇𝑖 in 𝑃 , which occurs in some index 𝑞. And we set 𝑆𝐻𝐼𝐹𝑇 [𝑖] ← 𝑚 − 𝑞 (see
figure 3). Suppose case 2 holds, then we can shift our sliding window by 𝑚−𝐵+1 characters,
since any smaller shift would get a mismatch. We can set 𝑆𝐻𝐼𝐹𝑇 [𝑖] ← 𝑚 − 𝐵 + 1.

The program 3.4 shows the Preprocessing phase of Wu-Manber algorithm

Program 3.3 Wu-Manber Preprocessing

1 function hash(s)
2 p ← 31
3 mod ←1 ∗ 109 + 9
4 hash ← 0
5 power ← 1
6 for 𝑐 ∈ 𝑠:
7 hash ← (hash + value(c) ∗ power) % mod
8 power ← (power ∗ p) % mod
9 return hash

10

11 function preprocess( , B)
12 m ←inf
13

14 for 𝑝 ∈  do

15 m ←min(|𝑝|, m)
16 end for

17

18 # SHIFT table is initialized with 𝑚 − 𝐵 + 1
19 for 𝑝 ∈  do

cont ⟶

30

3 | MULTIPLE PATTERN STRING MATCHING

⟶ cont
20 j ←m
21 while j ≥B do

22 hash ← compute_hash(p[j−B ⋯ J])
23 shift ←m − j
24 SHIFT[hash] ←min(SHIFT[hash], shift)
25 if shift = 0
26 prefixHash = compute_hash(p[0 ⋯ 1]
27 idx = i
28 push(TABLE[hash], (prefixHash, idx))
29 end while

30 end for

31 return SHIFT, TABLE

Example

Let  = 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 and  = [𝑎𝑏𝑟𝑎, 𝑐𝑎𝑑𝑎, 𝑏𝑟𝑎, 𝑎𝑐𝑎]. Suppose 𝐵 = 2. In this
case, 𝑚 = 3, and considering only the first 𝑚 characters of each pattern we get
 ′ = [𝑎𝑏𝑟, 𝑐𝑎𝑑, 𝑏𝑟𝑎, 𝑎𝑐𝑎]. The prefix table will contain the polynomial rolling hash for
each prefix of size 2 (because we set 𝐵 = 2). The table 3.1 shows the prefix table for this
example.

Prefix Table
ab 63
ca 34
br 560
ac 94

Table 3.1: Prefix Table for  = 𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 and  = [𝑎𝑏𝑟𝑎, 𝑐𝑎𝑑𝑎, 𝑏𝑟𝑎, 𝑎𝑐𝑎] with 𝐵 = 2

Now, for each pattern in 𝑃 ′, we consider its suffix of size 2 to construct the hash table.
We have the suffixes "ca", "ra", "ad" and "br". We map each suffix to a list of pairs. The
first value is the pattern in 𝑃 ′ which has the key as suffix, and the second value is the
polynomial rolling hash for the prefix of this pattern.

For the shift table, the initial value of each key will be 𝑚−𝐵+1. We map each substring
𝑠 of size B from 𝑃 ′ to the minimum of its current value and 𝑚 − 𝑗, where 𝑗 is the position
of the last character of 𝑠 in 𝑃𝑖 = 𝑎1 ⋯𝑎|𝑃𝑖 |, 𝑃𝑖 ∈ 𝑃 ′. Let’s see how it’s done in this example.

We have the substrings "ab", "br", "ca", "ad", "ra", and "ac", and the initial value is 2,
since 𝑚 = 3 and 𝐵 = 2.
Now we iterate over each pattern in 𝑃 ′.
For "abr", we map "ab" to 𝑚𝑖𝑛(2, 3 − 2) = 1 and "br" to 𝑚𝑖𝑛(2, 3 − 3) = 0.
For "cad", we map "ca" to 𝑚𝑖𝑛(2, 3 − 2) = 1 and "ad to 𝑚𝑖𝑛(2, 3 − 3) = 0
For "bra", we map "br" to 𝑚𝑖𝑛(0, 3 − 2) = 0 and "ra" to 𝑚𝑖𝑛(2, 3 − 3) = 0
For "aca", we map "ac" to 𝑚𝑖𝑛(2, 3 − 2) = 1 and "ca" to 𝑚𝑖𝑛(1, 3 − 3) = 0

3.3 | WU-MANBER

31

The table 3.2 shows the final shift table

Shift Table
Key Shift
ab 1
br 0
ca 0
ad 0
ra 0
ac 1

Table 3.2: Shift table for  = [𝑎𝑏𝑟𝑎, 𝑐𝑎𝑑𝑎, 𝑏𝑟𝑎, 𝑎𝑐𝑎]

3.3.3 Search

In the searching phase, we use a sliding window of size 𝑚 and we calculate the
polynomial rolling hash for the suffix of size 𝐵 of the window and we check the Shift
Table. If it’s greater than zero, we shift the window accordingly and repeat the process.
Otherwise we may have one, or several, matches. The hash table for this suffix key holds
all possible candidates. So how do we check for them efficiently? One may do this with a
brute-force fashion, checking each pattern for a match. We can do better using a heuristic
described by Wu Manber and using the precomputed tables. Since the hash table value is a
list of pairs where the first value is the polynomial rolling hash for the prefix, we can use
it as a filter method. This heuristic is good in practice when it is unlikely to have patterns
with the same prefix and suffix.

The program 3.4 shows the search phase of Wu-Manber algorithm.

Program 3.4 Wu-Manber Search

1 function search( , )
2 idx ←m−1
3 while idx < | | do ⊳ Compute hash value based on current B characters from text
4

5 hash ← compute_hash( [idx − B + 1 ⋯ idx])
6

7 if SHIFT[h] > 0
8 idx ← idx + SHIFT[h]
9

10 else ⊳ Possible match
11 prefixHash ← compute_hash( [idx−m+1 ⋯ idx−m+B])
12 for (ℎ𝑎𝑠ℎ, 𝑝) ∈ 𝑇𝐴𝐵𝐿𝐸[ℎ] do

13 if hash = prefixHash ⊳ Wu-Manber heuristic
14 check match
15 end for

16 idx ← idx + 1
17 end while

18 end

32

3 | MULTIPLE PATTERN STRING MATCHING

Example

The table 3.3 shows the execution of the Wu Manber searching phase for  =
𝑎𝑏𝑟𝑎𝑐𝑎𝑑𝑎𝑏𝑟𝑎 and  = [𝑎𝑏𝑟𝑎, 𝑐𝑎𝑑𝑎, 𝑏𝑟𝑎, 𝑎𝑐𝑎], with 𝐵 = 2. For example, at iteration 0,
the shift value holds zero and the hash table is checked for the suffix br. The hash table
yields the candidate abra and, since it has the same prefix value of window, we verify the
match of abra, which is true.

i window prefix (hash) suffix (hash) shift
0 abr ab (63) br (560) 0 (match found "abra")
1 bra br (560) ra (49) 0 (match found "bra")
2 rac ra (49) ac (94) 1
3 aca ac (94) ca (34) 0
4 cad ca (34) ad (125) 0
0 abr ab (63) br (560) 0 (match found "abra")
1 bra br (560) ra (49) 0 (match found "bra")

Table 3.3: Searching phase of Wu-Manber algorithm

3.3.4 Complexity

Regarding the Memory complexity, the algorithm is (|𝑇 | + |𝑀|), in order to build the
tables. To analyse the time-complexity, the original Wu Manber paper Wu and Manber,
1994 provides an estimation of the running time for this algorithm. The algorithm is
(𝐵| |/| | of time-complexity in the average case.

33

Chapter 4

Comparative Analysis of

Performance

4.1 Introduction

In this section, we are going to test the performance of the discussed algorithms.
For testing the algorithms for the Single Pattern Matching problem, it is useful to check
the performance of the algorithms against different text input sizes and pattern sizes.
Therefore, we use four different texts, with increasing length (i,.e, number of words) and
a set of 6 words from the text. We run the algorithms for each text and each word, and
take the average measured running time for each text. For dealing with Multiple Pattern
experiments, however, we use two large texts, and test the algorithms with a increasing
number of patterns selected from the text. The Input texts and word lists are available in
appendix 1.
All experiments were performed on a Ubuntu 20.04, Intel I5 8400, 8GBM Ram and the algo-
rithms were implemented in C++, available at https://github.com/raphaelrbr/mac499

4.2 Single Pattern Experiments

We are going to compare the performance of the Single Pattern Matching algorithms.
To do so, we conduct four experiments. In each one, we fix the test and select 8 patterns
from it and we measure the running time for finding these patterns.

4.2.1 Experiment 1

For the first experiment, we use as  the text "Raven" by Edgar Allan Poe. We measure
the running time for finding each one of the following patterns: this, that, door, chamber,
bird, raven, nevermore and lenore. The results are shown in table 4.1.

34

4 | COMPARATIVE ANALYSIS OF PERFORMANCE

Pattern Boyer-Moore Boyer-Moore-Horspool Trie Shift-Or KMP
this 9 𝜇𝑠 21 𝜇𝑠 23997704 𝜇𝑠 85 𝜇𝑠 123 𝜇𝑠
that 9 𝜇𝑠 7 𝜇𝑠 24222057 𝜇𝑠 43 𝜇𝑠 132 𝜇𝑠
door 8 𝜇𝑠 8 𝜇𝑠 22774469 𝜇𝑠 42 𝜇𝑠 122 𝜇𝑠

chamber 19 𝜇𝑠 8 𝜇𝑠 22623642 𝜇𝑠 42 𝜇𝑠 112 𝜇𝑠
bird 9 𝜇𝑠 7 𝜇𝑠 22636409 𝜇𝑠 42 𝜇𝑠 121 𝜇𝑠

raven 9 𝜇𝑠 8 𝜇𝑠 22726710 𝜇𝑠 43 𝜇𝑠 127 𝜇𝑠
nevermore 9 𝜇𝑠 12 𝜇𝑠 22765160 𝜇𝑠 45 𝜇𝑠 119 𝜇𝑠

lenore 16 𝜇𝑠 8 𝜇𝑠 22682270 𝜇𝑠 46 𝜇𝑠 124 𝜇𝑠

Table 4.1: Running time for the text Raven, by Edgar Allan Poe.

4.2.2 Experiment 2

For the second experiment, we use as  the text "Rise" by Maya Angelou. We measure
the running time for finding each one of the following patterns: rise, like, with, your, does,
still, just and that. The results are shown in table 4.2.

Pattern Boyer-Moore Boyer-Moore-Horspool Trie Shift-Or KMP
rise 3 𝜇𝑠 4 𝜇𝑠 756352 𝜇𝑠 22 𝜇𝑠 27 𝜇𝑠
like 3 𝜇𝑠 3 𝜇𝑠 750164 𝜇𝑠 18 𝜇𝑠 27 𝜇𝑠
with 7 𝜇𝑠 3 𝜇𝑠 748005 𝜇𝑠 37 𝜇𝑠 25 𝜇𝑠
your 7 𝜇𝑠 3 𝜇𝑠 747135 𝜇𝑠 18 𝜇𝑠 26 𝜇𝑠
does 5 𝜇𝑠 4 𝜇𝑠 747322 𝜇𝑠 18 𝜇𝑠 26 𝜇𝑠
still 6 𝜇𝑠 3 𝜇𝑠 750752 𝜇𝑠 20 𝜇𝑠 35 𝜇𝑠
just 8 𝜇𝑠 3 𝜇𝑠 749315 𝜇𝑠 19 𝜇𝑠 25 𝜇𝑠
that 7 𝜇𝑠 3 𝜇𝑠 742445 𝜇𝑠 20 𝜇𝑠 39 𝜇𝑠

Table 4.2: Running time for the text Rise, by Maya Angelou.

4.2.3 Experiment 3

For the third experiment, we use as  the book "DonQuixote" by Miguel de Cervantes.
We measure the running time for finding each one of the following patterns: that, with,
this, they, said, have, quixote and sancho. The results are shown in table 4.3. The Trie Data
Structure was omitted for this experiment because the algorithm could not finish under a
reasonable amount of time for the purpose of this experiment.

4.2.4 Experiment 4

For the third experiment, we use as  the book "Hamlet" by Shakespeare. We measure
the running time for finding each one of the following patterns: hamlet, that, this, with,
your, lord, what and king. The results are shown in table 4.4. Again, the Trie data structure
was omitted for this experiment.

4.3 | MULTIPLE PATTERN EXPERIMENTS

35

Pattern Boyer-Moore Boyer-Moore-Horspool Trie Shift-Or KMP
that 11399 𝜇𝑠 9029 𝜇𝑠 - 11202 𝜇𝑠 41130 𝜇𝑠
with 11426 𝜇𝑠 7223 𝜇𝑠 - 11361 𝜇𝑠 38608 𝜇𝑠
this 11009 𝜇𝑠 7339 𝜇𝑠 - 11194 𝜇𝑠 40885 𝜇𝑠
they 11036 𝜇𝑠 7111 𝜇𝑠 - 11125 𝜇𝑠 41443 𝜇𝑠
said 10570 𝜇𝑠 7456 𝜇𝑠 - 11156 𝜇𝑠 39446 𝜇𝑠
have 11055 𝜇𝑠 7414 𝜇𝑠 - 111223 𝜇𝑠 39915 𝜇𝑠

quixote 8200 𝜇𝑠 5821 𝜇𝑠 - 11149 𝜇𝑠 37819 𝜇𝑠
sancho 8466 𝜇𝑠 5915 𝜇𝑠 - 11154 𝜇𝑠 39976 𝜇𝑠

Table 4.3: Running time for the book "DonQuixote" by Miguel de Cervantes.

Pattern Boyer-Moore Boyer-Moore-Horspool Trie Shift-Or KMP
hamlet 942 𝜇𝑠 785 𝜇𝑠 - 859 𝜇𝑠 3654 𝜇𝑠

that 906 𝜇𝑠 630 𝜇𝑠 - 940 𝜇𝑠 3295 𝜇𝑠
this 927 𝜇𝑠 597 𝜇𝑠 - 889 𝜇𝑠 3349 𝜇𝑠
with 917 𝜇𝑠 587 𝜇𝑠 - 895 𝜇𝑠 3387 𝜇𝑠
your 943 𝜇𝑠 616 𝜇𝑠 - 914 𝜇𝑠 3299 𝜇𝑠
lord 729 𝜇𝑠 601 𝜇𝑠 - 1080 𝜇𝑠 3331 𝜇𝑠
what 923 𝜇𝑠 627 𝜇𝑠 - 897 𝜇𝑠 3315 𝜇𝑠
king 944 𝜇𝑠 713 𝜇𝑠 - 882 𝜇𝑠 3407 𝜇𝑠

Table 4.4: Running time for the book "Hamlet" by Shakespeare.

4.2.5 Results

As we can see, the Boyer-Moore was the fastest algorithm to find the patterns in
the experiments 1 and 2. However, in the third and fourth experiment, we can see the
Boyer-Moore-Horspool is slightly faster, which may suggest this algorithm can be faster
than the Boyer-Moore for large texts. The Trie data structure is significantly slower
than the other algorithms due to its build phase. The Shift-Or and KMP algorithms were
similar in performance but still slower than the Boyer-Moore and Boyer-Moore-Horspool
algorithms.

4.3 Multiple Pattern Experiments

Now, we are going to compare the performance of the Aho-Corasick algorithm and
the Wu-Manber algorithm. To do so, we conduct two experiments, using a fixed text and
varying the number of patterns from 8 to 256, measuring the running time to find these
patterns.

4.3.1 Experiment 1

For the first experiment, we use the book "DonQuixote" by Miguel de Cervantes. We
measure the running time for finding a set of patterns with length varying from 8 to 256.
The patterns were chosen among the most frequent words from this book. The results are

36

4 | COMPARATIVE ANALYSIS OF PERFORMANCE

shown in table 4.5

no. of patterns Aho-Corasick Wu-Manber
8 168029 𝜇𝑠 980976 𝜇𝑠
16 242129 𝜇𝑠 1106758 𝜇𝑠
32 337313 𝜇𝑠 1321426 𝜇𝑠
64 891802 𝜇𝑠 1580664 𝜇𝑠
128 2329824 𝜇𝑠 1730832 𝜇𝑠
256 6037932 𝜇𝑠 2010092 𝜇𝑠

Table 4.5: Running time for the multiple pattern algorithms for book "DonQuixote" by Miguel de
Cervantes.

4.3.2 Experiment 2

For the second experiment, we use the book "Hamlet" by Shakespeare. We measure the
running time for finding a set of patterns with length varying from 8 to 256. The patterns
were chosen among the most frequent words from this book. The results are shown in
table 4.6

no. of patterns Aho-Corasick Wu-Manber
8 15841 𝜇𝑠 119811 𝜇𝑠
16 22175 𝜇𝑠 128568 𝜇𝑠
32 31451 𝜇𝑠 149018 𝜇𝑠
64 88873 𝜇𝑠 166448 𝜇𝑠
128 252300 𝜇𝑠 198210 𝜇𝑠
256 8662316 𝜇𝑠 214881 𝜇𝑠

Table 4.6: Running time for the multiple pattern algorithms for book "Hamlet" by Shakespeare.

4.3.3 Results

Our experiments shows that the Aho-Corasick algorithm performs faster than the
Wu-Manber algorithm for a small number of patterns. However, for large number of
patterns we can see the Wu-Manber algorithm performing significantly faster than the
Aho-Corasick algorithm, which may suggest this algorithm is a better approach for a large
number of patterns.

37

Chapter 5

Final Considerations

In this monograph, we have explored various algorithms for string matching and
pattern recognition, including the Trie data structure, KMP, Boyer-Moore, Aho-Corasick,
and Wu-Manber algorithms. These algorithms have proven to be powerful tools for solving
a wide range of problems in computer science, from text processing and information
retrieval to cybersecurity and data compression.

Our experiments suggest that for solving the Single Pattern Matching Problem, the
Boyer-Moore and Boyer-Moore-Horspool algorithms were better suited in terms of per-
formance. The Shift-Or and KMP were similar in performance but still slower than the
first two algorithms. In last, the Trie Data Structure was the slowest due to its build phase.
However, there are several ways to improve the performance of the build phase of this
algorithm but these techniques are beyond the scope of this monograph.

Regarding the Multiple Pattern Matching Problem, we have studied the Wu-Manber
and Aho-Corasick algorithms. Our experiments suggest that the Aho-Corasick algorithms
performs faster than the Wu-Manber algorithm for a small number of patterns and the
opposite for a large number of patterns. However, it is important to highlight there are
many heuristics that can be used to improve the performance of these algorithms and
there are many different implementations for them.

In conclusion, this monograph has provided the reader with a solid foundation in string
matching algorithms and a better understanding of how these algorithms work and when
to use them. These algorithms will be valuable tools for solving complex problems.

39

Bibliography

[Aho and Corasick 1975] Alfred V. Aho and Margaret J. Corasick. “Efficient string
matching”. In: Communications of the ACM 18.6 (1975), pp. 333–340. doi: 10.1145/
360825.360855 (cit. on p. 23).

[Baeza-Yates and Gonnet 1989] R. A. Baeza-Yates and G. H. Gonnet. “A new ap-
proach to text searching”. In: ACM SIGIR Forum 23.SI (1989), pp. 168–175. doi:
10.1145/75335.75352 (cit. on p. 15).

[Boyer and Moore 1977] Robert S. Boyer and J. Strother Moore. “A fast string search-
ing algorithm”. In: Communications of the ACM 20.10 (1977), pp. 762–772. doi:
10.1145/359842.359859 (cit. on p. 4).

[Horspool 1980] R. Nigel Horspool. “Practical fast searching in strings”. In: Software:
Practice and Experience 10.6 (1980), pp. 501–506. doi: 10.1002/spe.4380100608
(cit. on p. 8).

[Knuth et al. 1977] Donald Ervin Knuth, Vaughan R. Pratt, and James H. Morris.
Fast pattern matching in strings. s.n., 1977 (cit. on p. 12).

[Wu and Manber 1994] S. Wu and U. Manber. A fast algorithm for multi-pattern
searching. University of Arizona. Department of Computer Science, 1994 (cit. on
pp. 28, 32).

https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/360825.360855
https://doi.org/10.1145/75335.75352
https://doi.org/10.1145/359842.359859
https://doi.org/10.1002/spe.4380100608

	Introduction
	Single Pattern String Matching
	Introduction
	Brute Force
	Boyer-Moore
	Bad Character
	Good Suffix
	Preprocessing
	Search
	Complexity

	Boyer-Moore-Horspool Algorithm.
	Preprocessing
	Search
	Example 1
	Example 2
	Complexity

	KMP Algorithm
	Prefix Function
	Example
	Proposition 1
	Proposition 2
	Optimizations
	Preprocessing
	Search
	Complexity
	Example 1

	Shift-Or Algorithm
	Bitmask
	Matching
	Algorithm
	Example 1
	Example 2

	Trie Data Structure
	Construction
	Pattern Searching

	Multiple Pattern String Matching
	Introduction
	Aho-Corasick
	Preprocessing
	Suffix Link
	Search
	Exit Links
	Final Algorithm
	Complexity

	Wu-Manber
	Polynomial rolling hash
	Preprocessing
	Search
	Complexity

	Comparative Analysis of Performance
	Introduction
	Single Pattern Experiments
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Results

	Multiple Pattern Experiments
	Experiment 1
	Experiment 2
	Results

	Final Considerations
	Bibliography

