
University of São Paulo
Institute of Mathematics and Statistics

Bachelor of Computer Science

Implementing unit testing in the Linux
kernel

A participant observation in the AMD
display driver

Magali Lemes do Sacramento

Final Essay

mac 499 — Capstone Project

Supervisor: Paulo Meirelles

Co-supervisor: Rodrigo Siqueira

São Paulo

2022

The content of this work is published under the CC BY 4.0 license
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

Magali Lemes do Sacramento. Implementando testes de unidade no kernel Linux:
Uma observação participante no driver de display da AMD. Monografia (Bacha-

relado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2022.

Testes de software são uma parte intrínseca do desenvolvimento de software. Testar código manualmente

pode ser complicado e contraprodutivo, portanto, ferramentas automatizadas surgiram para realizar esse

trabalho de forma mais eficiente. O kernel Linux não poderia ser diferente e, devido a seu tamanho e diferentes

casos de uso, dispõe de ferramentas para testá-lo em uma variedade de cenários. Entre os diferentes tipos de

testes de software no kernel, nós nos concentramos em testes de unidade, em que as unidades, as menores

partes testáveis de código, são o alvo a ser testado. Este projeto apresenta uma perspectiva em relação

à introdução de testes de unidade em um subsistema do kernel Linux. Para atingir isso, seguimos uma

abordagem de observação participante e exploramos o arcabouço nativo de testes de unidade do Linux, o

KUnit. Nosso objeto de estudo para a introdução dos testes foi o driver de display da AMD, o maior driver

do Linux em linhas de código e também um subsistema onde testes de unidade ainda não haviam sido

implementados. Como resultado, discutimos como elaboramos os casos de teste e as escolhas de projeto

feitas ao longo do nosso processo, resumindo as lições aprendidas e recomendações.

Palavras-chave: Linux. KUnit. Testes de unidade. Testes de software. Observação participante.

Abstract

Magali Lemes do Sacramento. Implementing unit testing in the Linux kernel:
A participant observation in the AMD display driver . Capstone Project Report

(Bachelor). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,

2022.

Software testing is an intrinsic part of software development. Testing code manually can be cumbersome

and counterproductive, so automated tools emerged to perform this job more efficiently. The Linux kernel

could not be a different matter and, due to its size and different use cases, disposes of tools to test it against

various scenarios. Among the different types of software testing in the kernel, we focus on unit tests, where

units, the smallest testable pieces of code, are the target to be tested. This project presents a perspective on

introducing unit tests in a Linux kernel subsystem. To achieve that, we followed a participant observation

approach and explored Linux native unit testing framework, KUnit. Our target of study for introducing the

tests was the AMD display driver, the largest Linux driver in lines of code, and a subsystem where unit tests

still needed to be implemented. As a result, we discuss how we devised test cases and the design choices

made along our process, summarizing lessons learned and recommendations.

Keywords: Linux. KUnit. Unit tests. Software testing. Participant observation.

v

Contents

1 Introduction 1

2 Background 5
2.1 Linux Kernel Development . 5

2.2 Linux Kernel Testing Overview . 6

2.3 Unit Testing . 8

2.3.1 Techniques for Building Test Cases 9

2.3.2 Test-Driven Development (TDD) 9

2.4 KUnit . 10

2.4.1 Run KUnit . 10

2.4.2 Building Tests . 11

2.4.3 KUnit Usage in the Kernel . 13

2.5 AMD Display Driver . 14

3 Results and Discussion 17
3.1 General Contributions . 17

3.2 Implementing Unit Tests . 18

3.2.1 Using Test Design Techniques . 18

3.2.2 Covering Regressions . 22

3.2.3 Test Coverage . 24

3.2.4 Design Choices . 26

3.3 Summary . 27

4 Final Remarks 29

5 Personal Appreciation 33

vi

Appendixes

A Scripts 35

B Feedback 39
B.1 Suggestion . 39

B.2 Report . 40

B.3 Opinion . 40

Annexes

A Pictures 43

References 45

1

Chapter 1

Introduction

Software testing is unquestionably a vital piece of software development. It allows
catching regressions early on, avoiding the costs of finding bugs later, better ensures the
overall software quality, and is one way to validate changes made to the code. The greater
the variety of good tests in the software, the more robust it is.

Software testing becomes even more advantageous for projects with a massive codebase.
In the case of the Linux kernel, a free software project with over 20,000,000 lines of code
and lots of developers from around the globe contributing to it at a hectic pace, users could
not be the only resource for testing, so having a set of different automated tools to test it
is beneficial for the project.

Such a complex system naturally presents challenges when it comes to testing: how can
the developer ensure that a proposed change works across the many different architectures,
configurations, and hardware that Linux supports? Performing these manual checks can
be at times inconvenient. Thus, developers can rely on the available testing tools in Linux
or run their custom scripts. Still, when it comes to testing, the main challenge mentioned
by some of the Linux kernel maintainers is the need for more hardware for it (Schmitt,
2022).

Among all the different types of software testing, we highlight unit tests, a way to
test code by analyzing its internal logic, and, in most cases, hardware-independent. Its
advantage lies in the fact that they are relatively faster to run compared to the other
types of testing, providing quicker feedback when detecting possible errors. Due to its
significance, the Linux kernel has a standardized framework for unit testing, named KUnit,
used throughout this work to implement unit tests in the kernel.

KUnit was merged into the kernel mainline, the main tree maintained by Linus Torvalds,
in 2019, making it a quite recent addition to the kernel. Its interface makes writing unit
tests across different subsystems easy and uniform. The dependencies for running KUnit
tests are the same as the Linux kernel, making the learning curve for using this tool
relatively gentle. However, KUnit usage is still quite low in the kernel, with around 30%
of maintainers stating that they never heard about it, according to a survey conducted
by Schmitt, 2022.

In this work, we explored and understood how to implement unit tests within Linux

2

1 | INTRODUCTION

development context, focusing on unit tests using KUnit and its features, since we believe
a greater adoption of this tool can be very favorable for the kernel. This work is closer
to qualitative research, and the target of our observations is to write tests for the display
driver developed by AMD (Advanced Micro Devices, Inc.). More specifically, we lean
towards the ethnography framework since we directly dealt with and interacted with the
community – namely, the Linux community – in which we were interested.

We deemed the AMD display driver subsystem a good candidate for introducing unit
tests for two reasons. The first one is due to the mentorship we had: one of our mentors
works at AMD, and the other two are external contributors to the same subsystem we
wanted to explore; this resulted in us being granted an AMD Radeon™ RX 5700 XT 50th
Anniversary Graphics video card, displayed in Annex A as Figure A.1 and now a property
of the University of São Paulo, to explore and learn more about its internals. The second
one is because the AMD display driver has an abundance of mathematical functions that
we judged to be good targets for covering with unit tests.

In ethnographic research, the researcher gets immersed in the field they are studying,
becoming its member and documenting what is learned along the way from this fresh
point of view (Iacono et al., 2009). It can be achieved through different means, such as
participant observation and action research. In participant observation, the researcher
learns the practices of the group being studied by engaging and interacting with it, also
becoming a practitioner. In action research, the researcher is motivated by promoting
change in the context of what is being studied. In contrast to participant observation, this
approach makes a clear distinction between the roles of researcher and practitioner (Robey
and Taylor, 2018).

Another methodology that comes close to describing how we conducted this work is
the case study, where the researcher investigates specific events and the circumstances
brought by the practitioners (Iacono et al., 2009). Since the researcher is not necessarily
directly involved in the experience being studied, we determine this as a distinction from
the ethnographic approach we took. Our study mainly followed the participant-observation
methodology by participating in two groups.

Member Linux kernel community

Send patch

Discussion / Feedback

Figure 1.1: Direct interaction with the Linux kernel community

Making contributions to the Linux kernel is a challenging task. It requires looking for
a change, finding the correct repository to work on and mailing lists to send the patch to,
and setting up a development environment for dealing with all of this. As we intended
to contribute to writing unit tests, we needed first to get used to this workflow and the
community around it. Initially, we made general contributions to the AMD display driver
subsystem and continued to do so throughout the project, interacting in a flow similar to

1 | INTRODUCTION

3

the one represented by Figure 1.1.

Member Group Linux kernel community

Send patch

Discussion

Send patch

Discussion

Figure 1.2: Interaction with the Linux kernel community after internal discussions

Specific to our goal of introducing unit tests to the AMD display driver, we were part
of a group with contributors that took part in the Google Summer of Code program and
whose projects1,2,3 had the same target as this study. In this smaller group, we internally
developed and discussed the infrastructure, design choices, and methodologies for the
tests before sending them to the Linux community for more feedback. Figure 1.2 describes
the flow of this interaction.

Figure 1.3: Comparison between AMD and external contributors in the AMD Display Driver

In summary, we can split the participant observation into two aspects. Firstly, we
contributed and interacted with the AMD display driver and KUnit community, gathering
their overall feedback about the tests we wrote and our choices. Moreover, we made
other contributions not directly related to the scope of this work, but that served as a
form of learning about Linux development workflow. The second aspect is from being
part of a smaller community of external contributors to the AMD display driver, who
were interested in introducing unit tests into the subsystem, discussing and gathering
lessons throughout the process. Most AMD display driver subsystem contributions are

1 https://summerofcode.withgoogle.com/programs/2022/projects/fATmfPlL
2 https://summerofcode.withgoogle.com/programs/2022/projects/6AoBcunH
3 https://summerofcode.withgoogle.com/programs/2022/projects/JYeBJNnX

4

1 | INTRODUCTION

from AMD developers, as shown in Figure 1.3 (obtained from Program A.4). Therefore,
as external contributors, proposing new changes in this environment can present some
challenges.

The remainder of this capstone project consists of four more chapters. Chapter 2
explains the context where this work lies, going over essential concepts related to the
Linux kernel, software testing, in particular, unit testing, and how the AMD display driver,
our target of study, is structured. Chapter 3 mainly describes the steps to write the unit
tests and the design choices in adopting KUnit in a device driver. It also contains the
lessons we learned while implementing the tests. Chapter 4 summarizes all the work
and conclusions and presents probable future works based on what was accomplished.
Chapter 5 covers the author’s thoughts while working on the project. Moreover, to help
the reader, throughout the manuscript, we adopted the following conventions: bold is
used to highlight words; italic is used for file and directory names; monospace is used for
parts of code and commands.

5

Chapter 2

Background

This chapter provides the necessary information for understanding what was accom-
plished in this work. We start with an introduction to the Linux kernel and its development
process, followed by an overview of some of the tools used for testing it, then narrowing
down to unit testing and how it is applied in the context of the Linux kernel. Finally, we
head over to the AMD display driver, our object of study, to introduce unit tests.

2.1 Linux Kernel Development
The kernel is an essential piece of any operating system since it manages, at a low

level, the resources of a computer. In 1991, Linus Torvalds started developing the Linux
kernel as a hobby project based on MINIX. He published his work on a MINIX newsgroup1,
asking for feedback, and, from that moment on, Linux thrived as a free software project.
Nowadays, it powers smartphones, servers, desktops, and even embedded devices such as
Ingenuity, the first aircraft on Mars (Ackerman, 2022).

As for its organization, Linux is a monolithic kernel, meaning that the entire operating
system works in kernel mode (Tanenbaum and Bos, 2014). At first glance, this approach
can lead to thinking that adding and removing a new feature is complicated since all
system procedures are linked into one single kernel image, which would require changing
the whole kernel. To overcome this, Linux disposes of modules, which can be loaded and
unloaded at runtime, making it easy to extend the operating system.

The Linux kernel development style has unique features to coordinate the various
individuals and companies contributing to Linux. The Linux kernel is divided into different
areas with specific components such as file systems, memory management, and device
drivers. Within those areas, some subsystems specialize even further into more specific
domains. For instance, about file systems, there are the ext4 and Btrfs subsystems, and
about GPUs drivers, there are the AMD Display Core, Intel DRM Drivers, etc.

Each kernel subsystem typically has its tree and development style. Changes made
into the kernel usually go first through the subsystem to which they belong and are

1 https://historyofinformation.com/detail.php?entryid=2000

6

2 | BACKGROUND

subsequently reviewed and merged by the subsystem maintainer𝑠. Mailing lists are usually
used for discussions and sending patches, although there are subsystems that do not
necessarily rely on them and use other tools like GitHub. The MAINTAINERS file available
at the kernel repository is the source for checking information about each subsystem.

956 AMD DISPLAY CORE
957 M: Harry Wentland <harry.wentland@amd.com>
958 M: Leo Li <sunpeng.li@amd.com>
959 M: Rodrigo Siqueira <Rodrigo.Siqueira@amd.com>
960 L: amd-gfx@lists.freedesktop.org
961 S: Supported
962 T: git https://gitlab.freedesktop.org/agd5f/linux.git
963 F: drivers/gpu/drm/amd/display/

Figure 2.1: Section example from the MAINTAINERS file

An example extracted from the MAINTAINERS file is shown in Figure 2.1. The first
line (AMD DISPLAY CORE) is the name of the subsystem. The other lines are the section
entries, listing information such as the maintainers and their emails (M), relevant mailing
list to send patches and discussions (L), status (S), tree (T) where the subsystem work is
based and files (F) that the subsystem cover. Essentially, any change made in files under
drivers/gpu/drm/amd/display/ should go to the listed maintainers and mailing list, and also
be compatible with the current state of the indexed tree.

The mainline, the main kernel tree maintained by Linus, is where all of the work
developed in the subsystems comes together. There are some not-so-strict rules in this
development process: every two to three months, a kernel release is made; most of the new
changes introduced in the subsystems are merged during the first two weeks of this cycle,
called the merge window. After the merge window closes, the subsequent development
weeks prioritize patches that fix problems. A new release candidate kernel is published
roughly every new week until one of them is deemed to be good enough for the final
release2.

2.2 Linux Kernel Testing Overview
In the book The Art of Software Testing, Myers et al., 2012 characterizes testing as the

“process of executing a program with the intention of finding errors”. When bugs and
regressions are discovered before hitting production, developers can solve them faster,
offering a friendlier experience to the software end-user that will be less likely to deal
with a malfunctioning feature, for instance. Test is a common way to validate code, mainly
when new changes are introduced. Therefore, testing is undoubtedly an essential step in
software engineering practices.

Different types of tests exist, from techniques to testing the behavior of one function
exclusively up to testing an entire system. They each serve distinct purposes and, when
combined, help assure the reliability of a system. Cohn, 2009, in his book “Succeeding

2 https://www.kernel.org/doc/html/latest/process/2.Process.html

2.2 | LINUX KERNEL TESTING OVERVIEW

7

with Agile”, introduces the concept of a test pyramid to categorize the different types of
software testing: (i) End-to-end tests are at the top of the pyramid and test the application
as a whole from the perspective of a user; (ii) Integration tests, responsible for asserting
the integration among the system components, are in the middle of the pyramid; (iii) Unit
tests, which test small units of the code, stand at the base of the pyramid and are the focus
of this project.

In the 6.0 Linux kernel release, more than 2,000 developers contributed to more than
1,000,000 lines of code (Corbet, 2022). Large projects where many developers work on the
same file set can be crowded and hectic, making regressions and bugs almost unavoidable.
That is why the Linux kernel counts not only on its users for testing but also relies heavily
on the aforementioned automated testing tools.

Most of the millions of lines in the Linux kernel source code come from the drivers
directory, as illustrated in Figure 2.2. Therefore, it is worth analyzing how this part of the
kernel is tested and which tools are used, as one of the goals of this work is to introduce
one form of testing into a specific device driver. In this sense, Schmitt, 2022 characterizes
these testing tools, distinguishing between those described in academic works and those
found in grey literature.

Figure 2.2: Number of lines from the top-level directories of the 6.0 release kernel

As for the mapped testing tools presented in academic papers, most of them present
issues when setting up, installing, and using. Compared to the academic works, the number
of testing tools described in the grey literature is much larger. It is also a more reliable
and up-to-date source to understand and assess the tools that Linux developers currently
use.

8

2 | BACKGROUND

From the grey literature, there are reports from the different techniques currently
employed to test Linux: this varies from tools that can be used locally by developers and
others that report results after a patch is already at the sent stage.

Regarding the tools developers use to test Linux locally, we highlight Sparse3 and
Kselftest4, the most commonly used tool by kernel maintainers, according to the survey
conducted by Schmitt, 2022. Sparse, similar to what Smatch5 and Coccinelle/coccicheck6

do, is used for static analysis and can be easily run from inside the kernel repository by
running make with the corresponding option set. Kselftest is a framework that can be
used for writing many test types: unit, regression, stress, functional, and performance.
It is run as a userspace process and is found at tools/testing/selftests in the kernel source
code.

As for the tools that run integration tests and run them out of the developer local
scope, we mention the 0-day test robot7, KernelCI8, and LKFT9. The 0-day test robot
makes use of some of the testing tools mentioned above, retrieves patches that were
sent to mailing lists, applies them to the corresponding trees, compiles kernels with a
variety of configurations, and reports back to the developer that sent the patches in case
of any failure or warning. KernelCI, very similarly, also builds and runs tests against
a diverse set of architectures, providing detailed information about the results. Linux
Kernel Functional Testing (LKFT), maintained by Linaro, tests and builds kernels with
a particular focus on the ARM architecture. In summary, these platforms use some of the
testing tools mentioned previously to ensure the quality of the Linux kernel and detect
regressions as early as possible.

2.3 Unit Testing
Unit testing, sometimes called module testing, is a software testing technique that

focuses on testing small code units. In particular, this type of testing concentrates on
single functions or even on their smaller, testable parts. As this requires knowing the
implementation – as in code – of the application to be tested, it falls under the white-box
testing category.

JUnit, the first framework specialized in unit testing for the Java language, dates back to
1997 (Fowler, 2006). Since then, many other frameworks have emerged, such as pytest for
Python and Jest for Javascript, offering a structure for concisely writing unit tests.

Because of their simple nature, unit tests are usually faster to run when compared to
other types of testing, such as end-to-end testing. It also makes debugging more manage-

3 https://docs.kernel.org/dev-tools/sparse.html
4 https://docs.kernel.org/dev-tools/kselftest.html
5 https://lwn.net/Articles/691882/
6 https://docs.kernel.org/dev-tools/coccinelle.html
7 https://01.org/lkp/documentation/0-day-brief-introduction
8 https://foundation.kernelci.org/
9 https://lkft.linaro.org/

2.3 | UNIT TESTING

9

able, especially if the code to debug is covered by tests.

2.3.1 Techniques for Building Test Cases
Several strategies help developers to think efficiently and write unit tests for their code.

Myers et al., 2012 recommend using, firstly, white-box strategies and, then, black-box
strategies based on the code specification.

Black-Box Testing

• Equivalence Partitioning: takes advantage of the fact that within the infinite
number of possible inputs and outputs of the software, some of those present the
same behavior and can be grouped into equivalent classes. By using this technique,
we can derive fewer test cases and remain confident that we are still exercising and
testing the program enough.

• Boundary-value Analysis: is often applied alongside the equivalence partitioning
method. This approach suggests analyzing the class range and testing the values on
its border and those close to them. The motivation behind this is that more errors
are expected in areas where the software changes its behavior.

• Error Guessing: suggests guessing and writing tests for special cases that a program
may not have handled, such as, for a program that receives a list as input, an empty
list can be provided as an input.

White-Box Testing

• Statement Coverage: concerns having every code statement hit at least once by
testing. This is a fragile approach because one piece of code could easily cover all of
the statements and still not cover many outputs.

• Decision Coverage or Branch Coverage: describes that the true or false outcome
of every conditional and loop should be covered by testing.

• Multiple-condition Coverage: tests all the combinations of decisions within the
program, expanding, even more, the strategy applied by decision coverage.

2.3.2 Test-Driven Development (TDD)
In a test-driven development procedure, developers first build the tests, and since there

is no functioning code, they fail. Only after the tests are written the code, whose tests were
just written, is developed so that the tests can pass. This is done in a cycle, as illustrated in
Figure 2.3 until the code is deemed good enough, contrary to the established development
workflow where features are first developed and tested. In these circumstances, unit tests
are the type of tests that most fit TDD purposes since they can easily be written before
the feature is ready.

10

2 | BACKGROUND

Build
test

cases

Write
the func-
tionality

Refactor
the code

Figure 2.3: TDD cycle

2.4 KUnit
Unit tests existed in the kernel before KUnit, but for those subsystems that used it,

each had its way of handling and developing them. KUnit emerged as an alternative to
have a unified structure for unit tests within the kernel. Google engineers developed it,
the first RFC was sent on October 201810, and it was merged into the mainline in 2019,
arriving in Linux v5.5.

KUnit tests can be wrapped in a module or be built-in: in the former, the tests are run
when the module is loaded, and in the latter, they are run during boot time. When it started,
KUnit enabled the unit tests to be run only using the User-Mode Linux (UML) architecture,
which allows running a kernel instance as a standalone user-space process, meaning that
there is no need to set up, build and install a kernel on a target machine. This option still
exists today, but there is also support for running KUnit in other instances.

2.4.1 Run KUnit
To run KUnit tests, a Linux kernel repository, newer than version 5.5, is needed. The

dependencies for running KUnit are the same as the Linux kernel. The most straightforward
way to run KUnit is through the Python script, found under tools/testing/kunit/kunit.py in
the kernel repository. This script can configure, build and run a kernel with the selected
KUnit tests on UML or a virtual machine by using QEMU11, adding the possibility of
running the tests in different architectures easily.

The selection of the tests to run is made through a configuration file that tells the kernel
which tests and how they should be built. It is a common practice for subsystems that use
KUnit to provide a .kunitconfig file, defining the tests to be built and the dependencies
they may have. Then, when running a set of tests from a specific subsystem is desired,
we can pass that configuration file as an argument for the kunit.py script to execute, as

10 https://lore.kernel.org/lkml/20181016235120.138227-1-brendanhiggins@google.com/
11 Machine emulator and virtualizer

2.4 | KUNIT

11

Figure 2.4: Result output from running KUnit tests from the DRM subsystem

shown in Figure 2.4.

KUnit tests can also be run on real hardware. To do that, one must select which tests to
run through the system configuration file and build and install the kernel onto the system.
If the tests are in a module, running modprobe test_module, where test_module is the
name of the module containing the tests, will load the tests and display the results in the
kernel buffer. If the tests are built-in, they automatically run during boot and, similarly,
are also available in the kernel buffer, which can be accessed by running dmesg.

2.4.2 Building Tests
The most basic idea in unit testing is making assertions, that is, comparing whether an

output is behaving accordingly to what is expected from it. For making assertions, KUnit dis-
poses of two classes of macros: KUNIT_EXPECT_* and KUNIT_ASSERT_*. Assertions are dif-
ferent from expectations: when assertions are not met, the test function stops running com-
pletely, not allowing the other tests to be run. Some macros such as KUNIT_EXPECT_FALSE,
KUNIT_EXPECT_TRUE and KUNIT_EXPECT_NULL check the state of only one value; oth-
ers such as KUNIT_EXPECT_EQ, KUNIT_EXPECT_NE, KUNIT_EXPECT_STREQ compare two
values against each other.

In KUnit, functions of signature void function_test(struct kunit *test) define
one test case, containing assertions and/or expectations. function_test is the name
of the function containing the assertions, and struct kunit is a structure that stores a
test context, with information such as the data needed for the test and the test status. In
Figure 2.5, a simple example for building tests for two functions using the KUNIT_EXPECT_*
macros is displayed.

Each test case needs to be passed to the KUNIT_CASE macro to set a struct ku-
nit_case for that function. The struct kunit_case is a representation of the test func-
tion that stores additional information such as the test status and log. Related functions

12

2 | BACKGROUND

1 void prime_test(struct kunit *test)
2 {
3 KUNIT_EXPECT_FALSE(test, is_prime(0));
4 KUNIT_EXPECT_FALSE(test, is_prime(1));
5 KUNIT_EXPECT_TRUE(test, is_prime(2));
6 KUNIT_EXPECT_FALSE(test, is_prime(24));
7 }
8

9 void factorial_test(struct kunit *test)
10 {
11 KUNIT_EXPECT_EQ(test, 1, factorial(0));
12 KUNIT_EXPECT_EQ(test, 1, factorial(1));
13 KUNIT_EXPECT_EQ(test, 2, factorial(2));
14 KUNIT_EXPECT_EQ(test, 120, factorial(5));
15 KUNIT_EXPECT_EQ(test, 3628800, factorial(10));
16 }

Figure 2.5: KUnit syntax for building two test cases

are grouped in an array of struct kunit_case, as displayed in Figure 2.6, required to
end with NULL.

1 static struct kunit_case math_test_cases[] = {
2 KUNIT_CASE(prime_test),
3 KUNIT_CASE(factorial_test),
4 {}
5 };

Figure 2.6: Test cases should be grouped into an array

A test suite, defined as a struct kunit_suite, is then built with the array containing
the test cases. We can optionally also specify functions to be run before and after each test
case by assigning a function to .init and .exit, respectively. Functions for setting up and
tearing down the test environment before and after the test suite is run can also be set in
the suite_init and suite_exit members. Finally, for the tests in a suite to be recognized
and run by KUnit, they must be passed to the kunit_test_suite macro. Figure 2.7 shows
the declaration of a KUnit test suite built on top of the previous examples.

1 static struct kunit_suite math_test_suite = {
2 .name = "math",
3 .init = math_test_init,
4 .exit = math_test_exit,
5 .suite_init = math_suite_init,
6 .suite_exit = math_suite_exit,
7 .test_cases = math_test_cases,
8 };
9 kunit_test_suite(math_test_suite);

Figure 2.7: KUnit suite declaration

Depending on how the test cases were built and grouped, there may be a need for more

2.4 | KUNIT

13

than one test suite in one file. This can be achieved by simply replacing kunit_test_suite
with kunit_test_suites and passing all the struct kunit_suite as arguments.

KUnit also supports parameterized testing, providing a simple structure for running
the same set of tests for different values. Instead of having KUNIT_CASE, this approach
uses KUNIT_CASE_PARAM, which takes, besides the test cases, a function that iterates over
the different cases as a second argument.

Testing every single function of a file through KUnit is not always possible in a uniform
way: there are different approaches depending on whether a function is static. Currently,
the only way to test static functions is by including the .c test file into the source file, using
the #include directive. If we want to have a module only for tests, the functions to be
tested have to be exported so that the test module can access them. If there is no such
requirement and no static function to be tested, then the tests can be a part of the module
along with the functions to test.

All of the macros, functions, and structs needed for building tests mentioned previously
are available in the kunit/test.h header. Therefore, every file containing KUnit tests has to
include it.

2.4.3 KUnit Usage in the Kernel
KUnit adoption in the Linux kernel subsystems is still at a very initial stage. Using the

Linux kernel version 6.0 repository as a starting point, we built a set of scripts to discover
which subsystems use KUnit. The core idea to determine that was by looking for all files
that include the kunit/test.h header and, from there, obtain the subsystem to which that
file belongs.

In the Linux kernel version 6.0, we found 35 subsystems that adopted KUnit, obtained
through the script described in Program A.1. Apart from the specific subsystems, KUnit
is also used to test some general utility libraries, such as hash routines and sorting, that
do not belong to one specific subsystem and are listed under “THE REST”. From the list,
we highlight the tests developed for DRM, the parent subsystem of the AMD display
driver.

• APPARMOR SECURITY MODULE

• ASPEED SD/MMC DRIVER

• BITMAP API

• CHROME HARDWARE PLATFORM
SUPPORT

• COMMON CLK FRAMEWORK

• DATA ACCESS MONITOR

• DRIVER CORE, KOBJECTS, DE-
BUGFS AND SYSFS

• DRM DRIVERS

• EXT4 FILE SYSTEM

• FILESYSTEMS (VFS and infrastruc-
ture)

• GENERIC INCLUDE/ASM HEADER
FILES

• HIBERNATION (aka Software Sus-
pend, aka swsusp)

• HID CORE LAYER

• IIO SUBSYSTEM AND DRIVERS

• KASAN

14

2 | BACKGROUND

• KCSAN

• KERNEL UNIT TESTING FRAME-
WORK (KUnit)

• KFENCE

• KPROBES

• LANDLOCK SECURITY MODULE

• LINEAR RANGES HELPERS

• LIST KUNIT TEST

• MANAGEMENT COMPONENT
TRANSPORT PROTOCOL (MCTP)

• NETWORKING [GENERAL]

• NETWORKING [MPTCP]

• NITRO ENCLAVES (NE)

• PROC SYSCTL

• REAL TIME CLOCK (RTC) SUBSYS-
TEM

• S390

• SLAB ALLOCATOR

• SOUND - SOC LAYER / DYNAMIC
AUDIO POWER MANAGEMENT
(ASoC)

• THE REST

• THUNDERBOLT DRIVER

• TIMEKEEPING, CLOCKSOURCE
CORE, NTP, ALARMTIMER

• VFAT/FAT/MSDOS FILESYSTEM

Figure 2.8: Amount of subsystems that adopted KUnit since its release

From the script in Program A.3, we obtained a plot, shown in Figure 2.8, illustrating the
evolution in the number of subsystems that have used KUnit since its release in v5.5.

2.5 AMD Display Driver
A Graphics Processing Unit (GPU) is a specific-purpose processor with many small

cores and a dedicated memory called VRAM – which stands for Video RAM. GPUs are

2.5 | AMD DISPLAY DRIVER

15

mainly used in graphics, dealing with many simple calculations, such as for rendering
geometric shapes. As GPUs have many cores, they can execute those many parallel simple
operations more efficiently when compared to other types of processors. The display driver
performs the job of reading the GPU frames in the VRAM up until displaying it on a screen
or display device.

The AMD display driver in the Linux kernel is a part of the AMDGPU module and is
found under the drivers/gpu/drm/amd/display directory. AMDGPU belongs to the Direct
Rendering Manager (DRM) subsystem, which is responsible for handling graphics devices
in Linux. The AMD display driver has two main components12:

• Display Core (DC): handles hardware programming and resource management;
the implementations do not depend on the operating system it is on.

• Display Manager (DM): implements the AMDGPU base driver and the DRM API,
making it dependent on Linux.

The driver supports two architectures: Display Core Engine (DCE) and its successor,
Display Core Next (DCN). Figure 2.9 shows the files and directories, in yellow and blue
respectively, that make up the AMD display driver, with the DM component living under
the amdgpu_dm folder and DC in the dc one.

drivers/gpu/drm/amd/display

amdgpu_dm dc dmub include Kconfig Makefile modules TODO

Figure 2.9: AMD display driver directory structure at kernel v6.0

In the DCE architecture, fixed-point arithmetic is used to calculate mode setting13

parameters. The specific code for this architecture is spread across the dc directory, with a
dce folder centralizing the common logic for the different versions of the architectures
and specific folders for each architecture version released: dce60 for the DCE 6 and dce120
for the DCE 12, for instance.

Alternately, the code for the DCN architecture uses floating-point operations handled
in the Floating-Point Unit (FPU). Floating-point usage in the kernel can be unsafe, mainly
due to it allowing a change of the floating-point state of the CPU. Because of this, the DCN
code that uses FPU is isolated in the Display Mode Library (DML) directory, found at dc.
Thus, it allows for centralized control of the functions that access the FPU. Similar to the
DCE case, the code for each DCN version is under dc – dcn20 corresponds to the DCN
2.0 architecture, as an example. There is the particularity of having directories for each
architecture at the dml folder.

12 https://docs.kernel.org/gpu/amdgpu/display/index.html
13 Operation that sets a display resolution, depth, and frequency.

16

2 | BACKGROUND

dc

basics

dce

dce60

dce120

dcn20

dcn32

dml

dcn20

dcn32

Figure 2.10: DC simplified directory structure

Another important directory under dc is basics, responsible for providing a set of utility
functions and structures, such as for handling fixed-point operations and vectors. Both
DCE and DCN rely on this module.

(a) Directories from the display folder by number of lines (b) Top 10 directories in dc in number of lines

Figure 2.11

The Display Core directory has many other files and directories, such as the graphics
card BIOS and other architecture-specific files, that we will not cover as they are only
partially related to the scope of this work. Figure 2.10 shows a very simplified representation
of the DC directory structure, highlighting the dml folder, where we wrote most of the
unit tests.

To get an idea of the size of the dc directory, we created some scripts, described in A.2,
to obtain the number of lines of code for the display folders and for the dc component.
Figure 2.11 depicts the size of the DC component in the number of lines.

17

Chapter 3

Results and Discussion

This chapter covers the contributions made to the Linux kernel: contributions related
to introducing unit tests to the AMD display driver and other more general contributions
not wholly linked to fulfilling this goal. We also explain how test cases were devised and
discuss design choices related to KUnit’s adoption into AMDGPU.

3.1 General Contributions

As part of the process of getting used to the Linux kernel development workflow,
especially concerning the AMD display driver subsystem, we made a few first contributions
not directly related to adding unit tests. These were primarily the correction of compilation
warnings and the removal of duplicated and unused code. Those contributions are listed
in Table 3.1, where the numbers in green represent the number of lines added, and those
in red the number of lines removed.

Age Commit Message Files Lines
2022-02-02 drm/amd/display: Use NULL pointer instead of plain integer 1 -1 / 1
2022-02-24 drm/amd/display: Adjust functions documentation 1 -3 / 3
2022-02-24 drm/amd/display: Add conditional around function 1 -1 / 3
2022-02-24 drm/amd/display: Use NULL instead of 0 3 -1 / 4
2022-02-24 drm/amd/display: Turn functions into static 3 -18 / 3
2022-05-04 powerpc: Fix missing declaration of [en/dis]able_kernel_altivec() 1 -0 / 9
2022-08-10 drm/amd/display: remove DML Makefile duplicate lines 1 -2 / 0
2022-08-10 drm/amd/display: make variables static 4 -6 / 3
2022-08-10 drm/amd/display: remove header from source file 2 -2 / 2
2022-08-10 drm/amd/display: include missing headers 3 -0 / 5
2022-08-22 drm/amd/display: drm/amd/display: remove unused header 1 -34 / 0

Figure 3.1: Table listing contributions made to the Linux kernel

18

3 | RESULTS AND DISCUSSION

3.2 Implementing Unit Tests
Inside the AMD display driver directory structure, we mainly focused on writing unit

tests for the Display Mode Library (DML), part of the Display Core (DC) component, due to
its mathematical nature. This library is responsible for dealing with “clock, watermark, and
bandwidth calculations for DCN”1. Apart from DML, we also built tests for the fixed31_32
and DMUB libraries, both part of the Display Core component as well. For thinking
and devising test cases, we mostly relied on inspecting code coverage, equivalence
partitioning, and boundary-value analysis techniques, described in Section 2.3.1. We
also used past regressions in the code we evaluated as references to build test cases.

3.2.1 Using Test Design Techniques
The first file we explored was bw_fixed.c, which can be found at drivers/gpu/dr-

m/amd/display/dc/dml/calcs. It mainly contains basic mathematical functions, such as
calculating the absolute value and the ceiling of given numbers and operations that deal
with fixed-point arithmetic. The following two subsections discuss how we developed test
cases for two functions from this file using equivalence partitioning and boundary-value
analysis.

Function abs_i64()

The first function we explored was abs_i64, defined as shown in Figure 3.2. This
function returns an uint64_t with the absolute value of the parameter it receives.

1 static uint64_t abs_i64(int64_t arg)
2 {
3 if (arg >= 0)
4 return (uint64_t)(arg);
5 else
6 return (uint64_t)(-arg);
7 }

Figure 3.2: abs_i64() definition

We started off by analyzing the argument arg: an int64_t, alias for signed long
long, which can range from −(263) to 263 − 1. As a first approach, we wanted to test how
the function behaves when it deals with these border cases. Since any other values outside
the range mentioned above can lead to an integer overflow and the function does not
handle these cases, we did not test them.

−263 0 263 − 1

Figure 3.3: Equivalence partitions for abs_i64()

1 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=061bfa06a4

3.2 | IMPLEMENTING UNIT TESTS

19

By looking at the if-statements, we could determine two equivalence classes: one for
values greater than or equal to 0 and another for values less than 0. In the first scenario,
the function does not make any change to the input, and its return value is the input
integer, as it is, cast to uint64_t; in the second scenario, the function takes the input and
returns its opposite, also cast to uint64_t. As the function changes its behavior around 0,
we set it as one boundary. We also have the boundaries defined based on the argument
type, leaving us with the two categories depicted in Figure 3.3.

Finally, we wanted to test the values on the border and the values close to it so that
more than one representative of the partition class would get tested. We ended up with
the following cases for arg:

• −263, the lower bound of int64_t

• 0, value where the function changes its behavior

• 1, value close to one equivalence class boundary

• 263 − 1, the upper bound of int64_t

Figure 3.4 shows how we can build a test for the values above using KUnit fea-
tures.

1 /**
2 * abs_i64_test - KUnit test for abs_i64
3 * @test: represents a running instance of a test.
4 */
5 static void abs_i64_test(struct kunit *test)
6 {
7 KUNIT_EXPECT_EQ(test, 0ULL, abs_i64(0LL));
8 KUNIT_EXPECT_EQ(test, 1ULL, abs_i64(-1LL));
9

10 /* Argument type limits */
11 KUNIT_EXPECT_EQ(test, (uint64_t)MAX_I64, abs_i64(MAX_I64));
12 KUNIT_EXPECT_EQ(test, (uint64_t)MAX_I64 + 1, abs_i64(MIN_I64));
13 }

Figure 3.4: KUnit tests cases for abs_i64()

Function bw_floor2()

This function takes two arguments of type bw_fixed (whose structure definition is
found in Figure 3.5): the first one, arg, is the value that will be rounded down; the second
one, significance, is the multiple to which arg will be rounded. The function definition
is shown in Figure 3.6.

1 struct bw_fixed {
2 int64_t value;
3 };

Figure 3.5: bw_fixed definition

20

3 | RESULTS AND DISCUSSION

1 struct bw_fixed bw_floor2(
2 const struct bw_fixed arg,
3 const struct bw_fixed significance)
4 {
5 struct bw_fixed result;
6 int64_t multiplicand;
7

8 multiplicand = div64_s64(arg.value, abs_i64(significance.value));
9 result.value = abs_i64(significance.value) * multiplicand;

10 ASSERT(abs_i64(result.value) <= abs_i64(arg.value));
11 return result;
12 }

Figure 3.6: bw_floor2() definition

The first step we followed to build test cases for this function was defining the par-
tition classes. To do so, we began by analyzing the parameters: both are of type struct
bw_fixed, a structure consisting of only one member, value, of type int64_t.

arg.value significance.value result.value
- - -
0 + 0
0 - 0
+ + +
+ - +

Figure 3.7: Equivalence partitions for bw_floor2()

The variable value could be either positive, negative, or zero. Taking into account the
function context, we noticed that, as per lines 8 and 9 of the function definition (Figure 3.6),
the sign of the variable significance’s value does not make a difference, since the
function only uses its absolute value. On the other hand, the sign of arg value does
interfere with the function output. From here, we defined three equivalence classes, shown
in Figure 3.7: one that outputs positive values, another that outputs negative ones, and
another that outputs zero. We exercised the border values on the range of the arguments
in a similar manner as done for the function bw_floor2() described above in 3.2.1.

Furthermore, we added more than one test case for some equivalence classes in a way
to document and explain to developers, who might work with this function, how it works.
Figure 3.8 shows the final result with all the tests we built for bw_floor2().

3.2 | IMPLEMENTING UNIT TESTS

21

1 /**
2 * bw_floor2_test - KUnit test for bw_floor2
3 * @test: represents a running instance of a test.
4 */
5 static void bw_floor2_test(struct kunit *test)
6 {
7 struct bw_fixed arg;
8 struct bw_fixed significance;
9 struct bw_fixed res;

10

11 /* Round 10 down to the nearest multiple of 3 */
12 arg.value = 10;
13 significance.value = 3;
14 res = bw_floor2(arg, significance);
15 KUNIT_EXPECT_EQ(test, 9, res.value);
16

17 /* Round 10 down to the nearest multiple of 5 */
18 arg.value = 10;
19 significance.value = 5;
20 res = bw_floor2(arg, significance);
21 KUNIT_EXPECT_EQ(test, 10, res.value);
22

23 /* Round 100 down to the nearest multiple of 7 */
24 arg.value = 100;
25 significance.value = 7;
26 res = bw_floor2(arg, significance);
27 KUNIT_EXPECT_EQ(test, 98, res.value);
28

29 /* Round an integer down to its nearest multiple should return itself */
30 arg.value = MAX_I64;
31 significance.value = MAX_I64;
32 res = bw_floor2(arg, significance);
33 KUNIT_EXPECT_EQ(test, MAX_I64, res.value);
34

35 arg.value = MIN_I64;
36 significance.value = MIN_I64;
37 res = bw_floor2(arg, significance);
38 KUNIT_EXPECT_EQ(test, MIN_I64, res.value);
39

40 /* Value is a multiple of significance, result should be value */
41 arg.value = MAX_I64;
42 significance.value = MIN_I64 + 1;
43 res = bw_floor2(arg, significance);
44 KUNIT_EXPECT_EQ(test, MAX_I64, res.value);
45

46 /* Round 0 down to the nearest multiple of any number should return 0 */
47 arg.value = 0;
48 significance.value = MAX_I64;
49 res = bw_floor2(arg, significance);
50 KUNIT_EXPECT_EQ(test, 0, res.value);
51

52 arg.value = 0;
53 significance.value = MIN_I64;
54 res = bw_floor2(arg, significance);
55 KUNIT_EXPECT_EQ(test, 0, res.value);
56 }

Figure 3.8: bw_floor2() test case

22

3 | RESULTS AND DISCUSSION

After sending out the bw_fixed.c tests for review, an integer overflow prob-
lem in the code we were testing was detected and reporteda. This report is
shown in Appendix B.2. Subsequently, a patchb fixing the issue was sent, and
mergedc.
All things considered, we summarize these lessons:

• Following techniques for designing test cases is quite efficient, espe-
cially when not knowing, at first, how to select values for testing. In our
case, adopting those techniques proved extremely helpful for the small
functions we wrote tests for.

• For the test cases above, we are essentially using the same test and only
changing the function input values. This may be a good call for parame-
terized testing, as suggested in the mailing list discussion, which can be
checked in Appendix B.1.

• Tests can also serve as an alternative way to document the behavior of
a function.

a https://lists.freedesktop.org/archives/amd-gfx/2022-August/082649.html
b https://lists.freedesktop.org/archives/amd-gfx/2022-August/082746.html
c https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=6ae0632d17

Lessons and Recommendations

3.2.2 Covering Regressions
A regression happens when the software or part of it starts behaving unintendedly or

stops working after adding a new change. For both functions described below, we searched
for events of regressions in the code we intended to test, so we could build test cases that
cover those specific situations.

Function dcn21_update_bw_bounding_box()

After building tests for all functions from bw_fixed.c, we moved on to build test cases for
different DML files from the DCN 2.0 architecture, which corresponds to the architecture
from the GPUs we had at our disposal, at drivers/gpu/drm/amd/display/dc/dml/dcn20.

We built tests for this function based on a real-life event, using a Test-Driven De-
velopment (TDD) approach to show how unit tests can be integrated into the kernel
development process.

A TDD approach can also be adapted when finding a bug or regression in the code.
The flowchart in Figure 3.9 illustrates one way to do this, also summarized in the list of
steps below.

• After finding a regression, the developer has to investigate and identify why and
how it is happening.

• The developer, then, writes one or more test cases that will naturally fail due to the
regression but would pass in a regression-free code.

3.2 | IMPLEMENTING UNIT TESTS

23

• The regression is then fixed.

• The tests should be run and passed.

Find a regression Investigate it Build failing test(s) Fix regression

Are the
tests

passing?
Rework code

SuccessEnd

No

Yes

Figure 3.9: Diagram showing how to apply TDD to fix regressions

To apply this technique in the AMD display driver subsystem, we first identified a
regression in the dcn21_update_bw_bounding_box() function. At one point, this func-
tion exceeded the defined stack size for it, which caused a compilation warning. A first
attempt2 to fix this warning was made, and it fixed the problem. This solution, though,
did not preserve the function behavior – that is, the fix caused the function output to be
different from what it was before the fix –, causing a regression. A new patch3 was then
sent to fix both the stack size warning as well as the previously introduced regression. We
can summarize this set of events into three parts:

1. Problem: The stack size of the function triggered a compilation warning.

2. Regression: A patch fixed the problem, but it changed the function behavior.

3. Fix: A patch was sent to fix the regression and the initial problem.

We decided to use this occurrence as a background for devising a test case for the
dcn21_update_bw_bounding_box() function. To do so, we first investigated the root
cause of the introduced regression. After that, we built a test case that would fail due to
the circumstances brought by the tough patch but otherwise would pass if we just reverted
it. Then, we applied the patch that fixed the regression and reran the tests to check if the
problem was fixed by asserting if the tests had passed. This was an attempt to show by
example how developers, be they from the Linux kernel or not, can use tests to fix bugs
and regressions in a sophisticated manner.

Another important thing to highlight is that this function has large structures as
arguments, so we would stumble upon a stack-size warning when writing the test function
in the traditional KUnit manner. To solve that, we decided to take advantage of the

2 https://lists.freedesktop.org/archives/amd-gfx/2022-June/080004.html
3 https://lists.freedesktop.org/archives/amd-gfx/2022-June/080214.html

24

3 | RESULTS AND DISCUSSION

parameterized testing feature provided by KUnit, which, instead of using heap memory,
allocates the necessary memory dynamically, avoiding subsequent stack size warnings
and also making the process of adding new test cases for the function easier.

Function populate_subvp_cmd_drr_info()

We also found a regression in the populate_subvp_cmd_drr_info() for which
we wrote a test case, similarly to the approach applied to devise the test case for the
dcn21_update_bw_bounding_box() function. This function is found under drivers/gpu/-
drm/amd/display/dc/dc_dmub_srv.c.

In this case, a patch4 adding a new feature ended up introducing compilation warnings
for 32-bit architectures due to the floating-point operations in the code. A new patch5 was
then sent to fix the previous problem, but it turned out to change the function behavior by
zeroing some values from a structure it should not have. The summary of events is listed
as follows:

1. Problem: Floating-point operations caused 32-bit compilation errors.

2. Regression: A patch attempted to fix introduced the problem but zeroed all values
in the structure the function is supposed to populate.

To build the test case, we studied the expected behavior of the function before the
regression was introduced. After that, we devised cases using the values the function
produced when reverting the commit that brought the regression, so all the tests would
pass. We also applied parameterized testing.

• Tests can also serve for documenting a function past of regressions.
• One interesting source for building test cases is covering past regres-
sions in the code.

• For eventual regressions that may be found in the code, we strongly
recommend writing unit tests that cover them since the developer who
will fix it understands and can think of test cases where that piece of
code is not working.

Lessons and Recommendations

3.2.3 Test Coverage
Test coverage, or code coverage, is one way to estimate how much source code is

covered by tests, measuring the amount of source code that was hit when the tests that
cover it are run. Below, in Figure 3.10 we present the folders and files – in purple and
yellow, respectively – covered by tests.

4 https://lore.kernel.org/amd-gfx/20220630191322.909650-3-Rodrigo.Siqueira@amd.com/
5 https://lore.kernel.org/amd-gfx/20220708052650.1029150-1-alexander.deucher@amd.com/

3.2 | IMPLEMENTING UNIT TESTS

25

drivers/gpu/drm/amd/display/dc

basics

fixpt31_32.c

dc_dmub_srv.c dml

dcn20

dcn20_fpu.c display_mode_vba_20.c display_rq_dlg_calc_20.c

calcs

bw_fixed.c

Figure 3.10: Tree showing files for which tests were written

Using gcov, a tool that generates code coverage reports, alongside KUnit, we can obtain
information about the percentage of lines and functions covered, in addition to the specific
lines that were covered or not. Figures 3.12, 3.11, and 3.13 show the results we got.

Figure 3.11: Report showing code coverage from DML

Figure 3.12: Report showing code coverage for DMUB

Figure 3.13: Report showing code coverage from fixed31_32

26

3 | RESULTS AND DISCUSSION

As stated before, we mostly focused on writing tests for the DML folder. At first glance,
Figure 3.11 indicates that little line and function coverages were achieved in that area.
When analyzing those numbers, though, we have to keep in mind that this directory is
huge in number of lines and many of the functions need to be rewritten and split so that
they can be tested. Nevertheless, we have tests that cover 20 functions from the DML
folder.

Outside of the DML, in Figure 3.12 we can see that 10.3% of the runnable lines
from the dc_dmub_srv.c file were executed when our tests are run. We achieved
that by testing 1 out of the 26 functions of the file, in this case, the function popu-
late_subvp_cmd_drr_info(), discussed in the topic 3.2.2. As for the fixed31_32.c file,
which handles fixed-point operations, Figure 3.13 shows that our tests covered 48.7% of
the lines by testing 27.8% of the functions.

3.2.4 Design Choices
We placed all the tests in a tests folder under the display directory since this is where

all the files we tested live. Furthermore, under tests, we replicated the display folder
structure, following the structure of the files we tested. For example, the tests for the
drivers/gpu/drm/amd/display/dc/dml/dcn20/dcn20_fpu.c file are in drivers/gpu/drm/amd/dis-
play/tests/dc/dml/dcn20/dcn20_fpu_test.c.

Test Module

When compiling the Linux kernel, we can choose whether the modules will be built-in
or loadable. In the first case, it means that whenever the computer is booted, the module
will be automatically loaded. In the second case, we can choose, at runtime, when to load
and when to unload the module.

The KUnit tests we wrote can either be run as a module or be built-in, both as part of
the AMDGPU module. They are also hardware-independent and can run either on virtual
machines or on bare metal6.

When we first approached the task of using KUnit for writing tests for the AMD display
driver, we originally wanted the tests to be isolated in one single module, meaning that
they could be loaded and unloaded without necessarily depending on the whole AMDGPU
module.

KUnit allows tests to be run as a single module, but if we want to use functions from
other modules, as in any kernel module, they need to be available in the kernel namespace,
meaning that they have to be explicitly exported. That is not the case with the functions
in the AMD display driver, so we did not have an out-of-the-box solution for defining an
exclusive module for tests.

6 System with physical hardware

3.3 | SUMMARY

27

Static Functions

When writing the unit tests, we focused on testing public functions. As we progressed,
the public functions that we had not tested yet were mostly functions with high cyclomatic
complexity7, indicating that we would have to write many equally complex test cases if
we wanted to cover those functions well. That left us with the choice of either (i) creating
relatively incomplete tests that might cover only a couple of outcomes, (ii) explore the
simple static functions that were left or (iii) rewrite the public functions so that they can
be more approachable to testing.

1001 #if IS_ENABLED(CONFIG_AMD_DC_KUNIT_TEST)
1002 #include "../kunit/dc/dc_dmub_srv_test.c"
1003 #endif

Figure 3.14: Appending test file into source file

We chose the option 2 (ii) and decided to test static functions, especially since we
were interested in one static function with a regression history. As mentioned in the
subsection 2.4.2, the KUnit way for testing static functions means appending the test file
source code into the file we are testing, illustrated in Figure 3.14. This approach may not
please everyone, as a response in Appendix B.3 exemplifies, since, when testing a file, we
should try not to modify the original file as much as possible.

Finally, we chose a mixed approach for the tests: we appended the source code of the
test file only in the files with static functions we wanted to test; the files whose tested
functions were not static remained unchanged.

3.3 Summary
We can argue that unit testing is a consolidated practice in userspace applications and,

compared to lower-level applications like the Linux kernel, there are also similarities and
different challenges.

One of our first concerns was the need to mock devices, which proved unnecessary as
we wrote the tests for self-contained functions. This allows the tests to be run on various
machines; it does not depend on the specific GPU for which the code is written. Going
further, we followed techniques to write test cases also used in userspace software. Finally,
running the tests can be as easy as running a script or more challenging if the user chooses
to compile and install the kernel with tests coupled in it.

Now that the overall structure for unit testing is ready, it is quite straightforward to
follow the examples provided by the available tests and add new tests for both beginners
and more experienced developers. There are many opportunities to apply unit testing:
when developing a new feature, the developer can take advantage of TDD; if a regression
is found, one way to document it and be more confident that it will not come back is
by writing a unit test that covers it; write tests for code that is not yet covered by them,
making it possible to test it modularly or even be refactored.

7 A metric that expresses the number of possible paths that a piece of code can take (McCabe, 1976)

29

Chapter 4

Final Remarks

This work presents a perspective on introducing unit tests in the Linux kernel, focused
on the AMD display driver subsystem and using the KUnit framework. The first result of
this work is the descriptions of techniques for designing unit tests, which can be applied
not only in the Linux kernel context but also in a more general scope for other applications.
The second result is more kernel-centric and is about setting up a simple structure that
allows for testing any function in the code – not limited to non-static ones – and making
it easy for other developers to add any tests as needed.

Going through the formalism of designing test cases can be pretty valuable. Approaches,
such as equivalence partitioning and boundary-value analysis, help in thinking and devis-
ing valuable tests and make this task less time-consuming than blindly trying to devise the
tests without any technique in mind. Tracking and analyzing past regressions from the
code that will be under test are also very interesting ways to design test cases. These two
forms of creating test cases were used and discussed throughout this work and have found
them to be rich ways of documenting how a function behaves and how it has regressed in
the past.

Now that we have set up a structure for using KUnit in the AMD display driver, as soon
as our patches are merged, developers from the subsystem can take the tests we wrote
as example and write new tests, increasing the overall test coverage of the subsystem.
We recommend, for these new tests that may arise or in other contexts out of the kernel,
using the formal test design techniques and covering regression, as they make the process
of building tests less complicated. Furthermore, having KUnit in the subsystem allows
developers to write tests for a feature that is not yet implemented, benefiting from the
Test-Driven Development process and, consequently, expanding the code coverage.

When compared to userspace applications, some particularities are related to running
the tests in the kernel. We tried to touch as little source code as possible, meaning that
we did not export any function we wanted to test. To allow any function to be tested, we
coupled the tests inside the AMDGPU module – so that the functions were visible to the
test files – but still had to append the test file to the source files, which contained static
functions we desired to test. These choices are still subject to change.

Beyond the discussions brought in this monograph, we highlight these results and

30

4 | FINAL REMARKS

contributions:

• 1 tutorial at FLUSP website (Generate Linux kernel’s KUnit test coverage reports1).

• 3 posts at personal blog2.

• 11 authored patches to the Linux kernel3.

• 1 Reported-by patch 4.

• Full-slot presentation and lightning talk at the X.Org Developer’s Conference 20225,6.

Moreover, as mentioned previously in Section 2.4.3, KUnit usage across Linux kernel
subsystems is still tiny, opening doors to some future works such as:

• Adds more tests to subsystems that already use KUnit, improving their test coverage.

• Measures the quality of the unit tests in the kernel, evaluating whether good practices
in unit testing are followed.

• Refactors code that is already covered by unit tests.

• Analyzes the adoption of KUnit across the subsystems.

We also emphasize two pending technical tasks directly related to this work and points
to be analyzed as future work:

• IGT GPU Tools7 is a set of integration tests for the DRM subsystem. Among its tests,
IGT can run DRM unit tests defined inside the Linux kernel repository. Since DRM
tests were converted to use KUnit, IGT had to be adapted to continue running these
tests. As the AMD display driver is contained within DRM, its KUnit tests should
also be run using IGT since it would make it easier to integrate it with existing CI
infrastructures that already support IGT. There is already a work8 for adapting IGT
to run KUnit tests, but it still lacks closure.

• Test coverage can be used to detect missing coverage in the code and is a quite
helpful metric to evaluate the progress of unit tests in a system. One advantage of
KUnit is the ease of running its tests using the kunit_tool script available in the
kernel repository. It is also possible to use this script with gcov to generate the test
coverage reports, but there are a few limitations for it:

1. For GCC 9+ versions, there happens a linking issue: mangle_path from
gcc/gcov-io.* conflicts with the function of the same name defined in the Linux
kernel, fs/seq_file.c.

1 https://flusp.ime.usp.br/kernel/generate-kunit-test-coverage/
2 https://magalilemes.github.io/
3 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/log/?qt=author&q=Magali
4 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=01b537eeb049b98d7efc8f9c93c2608ef26ec338
5 https://indico.freedesktop.org/event/2/contributions/65/
6 https://indico.freedesktop.org/event/2/contributions/164/
7 https://gitlab.freedesktop.org/drm/igt-gpu-tools
8 https://groups.google.com/g/kunit-dev/c/fRteQ5_6164

4 | FINAL REMARKS

31

2. GCC 7+ versions are not able to generate gcov coverage information. This
happens because of how gcov exit handler is dealt9.

3. UML10 is the only supported architecture for obtaining the test coverage using
the script. The script does not support copying the files produced by gcov using
QEMU 11 as of now.

Issues 1 and 2 sums up to the script only being able to generate test coverage with a
GCC version older than 7. GCC 7 was released back in 2017, and nowadays, users have to
compile and install these older versions from the source, which can be a nuisance. From
this, solving these first two issues would make it pretty trivial to generate test reports
using KUnit and gcov.

Regarding issue 3, not all drivers support UML, which is the case with the AMD
display driver. To obtain the test coverage from this project using the kunit_tool, we had
to internally tweak the AMD display driver code a bit to make it support UML12. Instead,
by working on the way to retrieve the test coverage information from other architectures
through the script, we can guarantee a broader range of subsystems that do not support
UML being able to use kunit_tool to obtain the test coverage.

9 https://lore.kernel.org/all/d36ea54d8c0a8dd706826ba844a6f27691f45d55.camel@sipsolutions.net/
10 User-Mode Linux
11 https://lore.kernel.org/all/CAGS_qxpbH6c3OvoYZC6TXFQomLpwZg5q7=EZ9B9k=Rw1mOz=0w@mail.gmail.com/
12 https://gitlab.freedesktop.org/isinyaaa/linux/-/merge_requests/8

33

Chapter 5

Personal Appreciation

When I switched majors, I only knew I liked programming, but that certainly would
not be enough. Computer Science is a very broad area that covers many different subjects
and I knew I had to use the next 4 years of undergraduate study to figure out which areas
I liked the best. It doesn’t take much to get overwhelmed during the major with so much
to learn and so many possible paths ahead. I decided, then, that I wanted to have a taste of
what both academia and the industry have to offer in the field (conscious, though, that
there is still a wide variety of topics that could be explored in these two domains).

In my sophomore year, I felt like I had a sort of solid enough programming background
but still lacked some hands-on experience outside of school projects. Around the middle of
the year I applied for an undergraduate research project, through PUB1 (Programa Unifi-
cado de Bolsas), to study about Free Software development models and the communities
around it. Paulo, also the advisor of this monograph, mentored me during this project
and is the one who got me interested in the Free Software movement in the first place.
This was also my first official contact with Free Software, where I learned about licensing,
collaborative work and development strategies, mainly centered around the Linux kernel.
I had been a user of Linux for a while, but I had never really taken the time to go and
understand more about how it was built by a large community of developers. This research
experience opened the doors for me to study about it and, at the same time, fulfilled my
goal of experimenting a bit of what academia feels like. I’d say this set the foundation for
this capstone project.

I also got to take part of Outreachy2 during the research period. I chose to work with
Guix3, mainly because it is written in Scheme and I was taking the Fundamental Concepts
in Programming Languages course, which used this language and other Lisp languages. It
was a very fun experience with tons of learnings and where I first collaborated to a free
software project. After the Outreachy internship, and still related to my undergraduate

1 A university program that provides paid research, community, cultural or teaching opportunities.
2 A program that offers internships in open source and open science to underrepresented people in the

technical industry where they are living.
3 A GNU operating system and package manager.

34

5 | PERSONAL APPRECIATION

research, I started collaborating to kworkflow4 as part of the Google Summer of Code
program. During this project, I got to know Rodrigo, the co-advisor of this monograph,
who helped me tremendously in improving technical skills.

When the time came to start thinking about what I would research for the capstone
project, it only felt natural to pursue something related to the Linux kernel, as I had been
around this theme for some time but hadn’t immersed myself into it yet. Rodrigo suggested
doing an exploratory work on introducing KUnit to the AMD display driver subsystem,
where he is a maintainer. Paulo and I were bought into it. Along the way, other peers
accompanied us and we had a small group of people to discuss and develop ideas regarding
the theme throughout this year. Having all of these people was very fruitful: we were
constantly debating ideas and choices related to the implementation of the unit tests and I
was always inspired by their intelligence. It also made the road to doing this project way
less lonely. I’m very thankful for everyone who took part in this.

From having no idea of what Free Software meant until actually contributing to one of
the most significant free software projects out there has been such a long way. Working
on this project allowed me to learn a lot about different areas in Computer Science, from
operating systems until software testing. It also gave me the opportunity to participate in
my first conference and present the project with my colleagues (also from USP) – definitely
one of the highlights from all of this.

As I finish my undergraduate studies, I realize that there is still an absurd amount of
things that I do not know and there is possibly no way to master them all. However, I try not
to feel intimidated by that now and use it as fuel to increase my desire for learning.

Overall, it has been quite rewarding.

4 A tool to help the Linux kernel development activities.

35

Appendix A

Scripts

Program A.1 Script used to retrieve the subsystems that use KUnit.

1 from pathlib import Path
2 import re
3 import subprocess
4 import sys
5

6 def subsystems_with_kunit(linux_repo):
7 subsystems_kunit = set()
8 paths = Path(linux_repo).rglob(’*’)
9

10 for path in paths:
11 if path.is_file():
12 with open(path, ’r’, encoding="ISO-8859-1") as f:
13 if "kunit/test.h" in f.read():
14 maintainer = subprocess.run(
15 ["./scripts/get_maintainer.pl", "--subsystem", "--no-email", "--no-l

", path],
16 stdout=subprocess.PIPE,
17 cwd=linux_repo,
18 encoding="utf-8")
19 subsystem = re.match("[^\n]+", maintainer.stdout).group(0)
20

21 subsystems_kunit.add(subsystem)
22 return subsystems_kunit
23

24 def main():
25 print(subsystems_with_kunit(sys.argv[1]))
26

27 if __name__ == ’__main__’:
28 main()

36

APPENDIX A

Program A.2 Script used to plot number of lines in a directory.

1 from glob import glob
2 from pathlib import Path
3

4 import json
5 import matplotlib.pyplot as plt
6 import pandas as pd
7 import seaborn as sns
8 import subprocess
9 import sys

10

11 sns.set(rc={ ’figure.figsize’: (15, 12) })
12 sns.set(font_scale=1.5)
13

14 def loc_plot(directory, n=None):
15 dirs_lines = []
16 directories = glob(str(directory) + "/*/", recursive=True)
17

18 if n is None:
19 n = len(directories)
20

21 for directory in directories:
22 tokei = subprocess.run(
23 ["tokei", directory, "--output", "json"],
24 stdout=subprocess.PIPE,
25 encoding="utf-8"
26)
27 tokei_json = json.loads(tokei.stdout)
28 lines = tokei_json["Total"]["code"]
29 dirs_lines.append(lines)
30

31 d = { ’Directories’: list(map(lambda d : Path(d).stem, directories)), ’Lines’: dirs_lines }
32 df = pd.DataFrame(d, columns=[’Directories’, ’Lines’])
33

34 ax = sns.barplot(
35 x=’Lines’,
36 y=’Directories’,
37 data=df,
38 order=df.sort_values(’Lines’, ascending=False).Directories.head(n)
39)
40

41 plt.show()
42

43 def main():
44 if len(sys.argv) == 2:
45 loc_plot(sys.argv[1])
46 elif len(sys.argv) == 3:
47 loc_plot(sys.argv[1], int(sys.argv[2]))
48 else:
49 print("python3 lines_of_code.py <path> [<n>]")
50

51 if __name__ == ’__main__’:
52 main()

A | SCRIPTS

37

Program A.3 Script used to show the evolution of KUnit’s usage.

1 from glob import glob
2 from pathlib import Path
3

4 import matplotlib.pyplot as plt
5 import re
6 import seaborn as sns
7 import subprocess
8 import sys
9

10 sns.set(rc={ ’figure.figsize’: (22, 12) })
11 sns.set(font_scale=1.5)
12

13 def subsystems_with_kunit(linux_repo):
14 subsystems_kunit = set()
15

16 paths = Path(linux_repo).rglob(’*’)
17 for path in paths:
18 if path.is_file():
19 with open(path, ’r’, encoding="ISO-8859-1") as f:
20 if "kunit/test.h" in f.read():
21 maintainer = subprocess.run(
22 ["./scripts/get_maintainer.pl", "--subsystem", "--no-email", "--no-l

", path],
23 stdout=subprocess.PIPE,
24 cwd=linux_repo,
25 encoding="utf-8")
26 subsystem = re.match("[^\n]+", maintainer.stdout).group(0)
27

28 subsystems_kunit.add(subsystem)
29 return subsystems_kunit
30

31 def main():
32 if len(sys.argv) != 2:
33 print("python3 kunit_usage.py <linux path>")
34 else:
35 linux_repo = sys.argv[1]
36 linux_tags = subprocess.run(
37 [
38 "git", "tag", "--list", ’v[5-9].[0-9]*’,
39 "--sort=version:refname"
40],
41 cwd=linux_repo,
42 stdout=subprocess.PIPE,
43 encoding="utf-8",
44)
45 tags = []
46

47 for t in linux_tags.stdout.split("\n")[:-1]:
48 final = re.match("v[0-9].[0-9]*$", t)
49 if final is not None:
50 tags.append(final.group(0))
51

52 kunit_usage = []
53

54 for tag in tags[4:]:
55 subprocess.run(
56 ["git", "checkout", tag],
57 cwd=linux_repo,
58 encoding="utf-8",
59)
60

61 kunit_usage.append(len(subsystems_with_kunit(linux_repo)))
62

63 ax = sns.lineplot(x=tags[4:], y=kunit_usage, marker=’o’)
64 ax.set_xlabel("Version", fontsize=15)
65 ax.set_ylabel("Number of subsystems", fontsize=15)
66

67 plt.show()
68

69 if __name__ == ’__main__’:
70 main()

38

APPENDIX A

Program A.4 Script to compare types of contributions in the AMD Display Driver.

1 from glob import glob
2 from pathlib import Path
3

4 import matplotlib.pyplot as plt
5 import pandas as pd
6 import seaborn as sns
7 import subprocess
8 import sys
9

10 sns.set(rc={ ’figure.figsize’: (1, 1) })
11 sns.set(font_scale=1.5)
12

13 def commits_amount(contributor, linux_repo):
14

15 command_template = "git log --oneline"
16 if contributor == "external":
17 command_template += " --author=’^(?!(.*@amd[.]com))’ --perl-regexp"
18 elif contributor == "amd":
19 command_template += " --author=’^(.*@amd[.]com)’ --perl-regexp"
20

21 commits = []
22

23 for year in range(2019, 2023):
24 command = command_template
25 command += " --after=\"" + str(year) + "-01-01\"" + " --until=\"" + str(year) + "

-12-31\""
26 command += " -- drivers/gpu/drm/amd/display | wc -l"
27

28 commits_out = subprocess.run(
29 command,
30 cwd=linux_repo,
31 encoding="utf-8",
32 shell=True,
33 stdout=subprocess.PIPE,
34)
35

36 commits.append(int(commits_out.stdout))
37

38 return {"year": list(range(2019, 2023)),
39 "contributor": [contributor]*4,
40 "commits": commits}
41

42 def main():
43 if len(sys.argv) != 2:
44 print("python3 kunit_usage.py <linux path>")
45 return
46

47 linux_repo = sys.argv[1]
48 df1 = pd.DataFrame(commits_amount("amd", linux_repo))
49 df = df1.append(pd.DataFrame(commits_amount("external", linux_repo)), ignore_index=True)
50

51 print(df)
52

53 sns.factorplot(x=’year’, y=’commits’, hue=’contributor’, data=df, kind=’bar’)
54

55 plt.show()
56

57

58 if __name__ == ’__main__’:
59 main()

39

Appendix B

Feedback

In this appendix, we showcase three feedback types we received from the community: a
suggestion, a warning report, and an opinion regarding the design choice we made.

B.1 Suggestion2

From: D...
Sat Aug 13 05:56:52 UTC 2022

On Thu, Aug 11, 2022 at 8:40 AM Tales Aparecida
<... at ...> wrote:
>
> The fixed31_32 library performs a lot of the mathematical operations
> involving fixed-point arithmetic and the conversion of integers to
> fixed-point representation.
>
> This unit tests intend to assure the proper functioning of the basic
> mathematical operations of fixed-point arithmetic, such as
> multiplication, conversion from fractional to fixed-point number,
> and more. Use kunit_tool to run:
>
> $./tools/testing/kunit/kunit.py run --arch=x86_64 \
> --kunitconfig=drivers/gpu/drm/amd/display/tests/
>
> Signed-off-by: Tales Aparecida <... at ...>
> ---

On the whole, I really like these tests: this sort-of fixed-point
library code is such an excellent example of the sorts of thing KUnit
is really well suited for.

The only thing I’ll comment on is that these _could_ be parameterised
tests (given most of them are just testing the same function over and
over with different inputs). That being said, it’s a matter of taste
as much as anything.

2 https://lists.freedesktop.org/archives/amd-gfx/2022-August/082828.html

40

APPENDIX B

B.2 Report4

From: D...
Thu Aug 11 07:34:50 UTC 2022

On Thu, Aug 11, 2022 at 8:40 AM Tales Aparecida
<... at ...> wrote:
>
> From: Maíra Canal <... at ...>
>
...
>
> This commit introduces a unit test to the bw_fixed library, which
> performs a lot of the mathematical operations involving fixed-point
> arithmetic and the conversion of integers to fixed-point representation
> inside the Display Mode Library.
>
...
> Signed-off-by: Maíra Canal <... at ...>
> Co-developed-by: Magali Lemes <... at ...>
> Signed-off-by: Magali Lemes <... at ...>
> Co-developed-by: Tales Aparecida <... at ...>
> Signed-off-by: Tales Aparecida <... at ...>
> ---

Not directly related to this patch, but I get a whole stack of
warnings about the definition of MIN_I64 causing integer overflow:
../drivers/gpu/drm/amd/amdgpu/../display/dc/dml/calcs/../../../tests/dc/dml/

calcs/bw_fixed_test.c:214:31:
note: in expansion of macro ’MIN_I64’
214 | KUNIT_EXPECT_EQ(test, MIN_I64 + 1, res.value);

| ^~~~~~~
../drivers/gpu/drm/amd/amdgpu/../display/dc/dml/calcs/bw_fixed.c:30:19:
warning: integer overflow in expression ’-9223372036854775808’ of type
’long long int’ results in ’-9223372036854775808’ [-Woverflow]
30 | (int64_t)(-(1LL << 63))

| ^

This seems to fix it (I’ll re-send it out as a separate patch so gmail
doesn’t mangle it once I’m a bit more convinced it’s the best
implementation):
...

B.3 Opinion6

From: C...
Thu Aug 11 11:22:10 UTC 2022

Am 11.08.22 um 02:40 schrieb Tales Aparecida:
> Hello,

4 https://lists.freedesktop.org/archives/amd-gfx/2022-August/082649.html
6 https://lists.freedesktop.org/archives/amd-gfx/2022-August/082643.html

B.3 | OPINION

41

>
> This series is the consolidation of an RFC sent earlier this year [RFC]
> bringing unit testing to the AMDPGU driver. [gsoc]
>
...
> We’ve chosen what we believe to be the simplest approach to integrate
> KUnit tests into amdgpu [kunit_static]. We took into consideration that
> this driver relies heavily on static functions with complex behavior
> which would benefit from unit testing, otherwise, black-box tested
> through public functions with dozens of arguments and sometimes high
> cyclomatic complexity. Further than that, this approach also helps
> beginners by avoiding the need to edit any Makefiles. Other approaches
> are available and we would gladly receive feedback on this matter.

Yeah, that approach immediately trigger goosebumps for me. We should
absolutely not do that.

The static functions are subject to change and we shouldn’t need to
change the unit tests when only the internals change.

Instead black box testing and/or exposing tests as a separate module
(e.g. for the fixed point calculations for example) is probably the way
to go.

Just my thoughts on this, essentially our display team has to take a look.

Regards,
C...

43

Annex A

Pictures

Figure A.1: AMD Radeon™ RX 5700 XT 50th Anniversary Graphics video card

45

References

[Ackerman 2022] Evan Ackerman. How NASA Designed a Helicopter That Could Fly Au-
tonomously on Mars. url: https://spectrum.ieee.org/nasa-designed-perseverance-
helicopter-rover-fly-autonomously-mars (visited on 12/18/2022) (cit. on p. 5).

[Cohn 2009] Mike Cohn. Succeeding with Agile: Software Development Using Scrum.
ISBN 978-0321579362. Addison-Wesley Professional, 2009 (cit. on p. 6).

[Corbet 2022] Jonathan Corbet. Some 6.0 development statistics. url: https://lwn.net/
Articles/909625/ (visited on 12/22/2022) (cit. on p. 7).

[Fowler 2006] Martin Fowler. Xunit. 2006. url: https://martinfowler.com/bliki/Xunit.
html (visited on 12/22/2022) (cit. on p. 8).

[Iacono et al. 2009] Jessica Iacono, Ann Brown, and Clive Holtham. “Research meth-
ods–a case example of participant observation”. In: The Electronic Journal of
Business Research Methods Volume 7 (Jan. 2009), pp. 39–46 (cit. on p. 2).

[McCabe 1976] T.J. McCabe. “A complexity measure”. In: IEEE Transactions on Software
Engineering SE-2.4 (1976), pp. 308–320. doi: 10.1109/TSE.1976.233837 (cit. on
p. 27).

[Myers et al. 2012] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of
software testing. 3rd ed. Hoboken and N.J: John Wiley & Sons, 2012 (cit. on pp. 6,
9).

[Robey and Taylor 2018] Daniel Robey and Wallace T.F Taylor. “Engaged participant
observation: an integrative approach to qualitative field research for practitioner-
scholars”. In: Engaged Management 2 (2018) (cit. on p. 2).

[Schmitt 2022] Marcelo Schmitt. “Linux kernel device driver testing”. São Paulo:
Universisade de São Paulo, Dec. 2022 (cit. on pp. 1, 7, 8).

[Tanenbaum and Bos 2014] Andrew S. Tanenbaum and Herbert Bos. Modern Operat-
ing Systems. 4th ed. Boston, MA: Pearson, 2014. isbn: 978-0-13-359162-0 (cit. on
p. 5).

https://spectrum.ieee.org/nasa-designed-perseverance-helicopter-rover-fly-autonomously-mars
https://spectrum.ieee.org/nasa-designed-perseverance-helicopter-rover-fly-autonomously-mars
https://lwn.net/Articles/909625/
https://lwn.net/Articles/909625/
https://martinfowler.com/bliki/Xunit.html
https://martinfowler.com/bliki/Xunit.html
https://doi.org/10.1109/TSE.1976.233837

	Introduction
	Background
	Linux Kernel Development
	Linux Kernel Testing Overview
	Unit Testing
	Techniques for Building Test Cases
	Test-Driven Development (TDD)

	KUnit
	Run KUnit
	Building Tests
	KUnit Usage in the Kernel

	AMD Display Driver

	Results and Discussion
	General Contributions
	Implementing Unit Tests
	Using Test Design Techniques
	Covering Regressions
	Test Coverage
	Design Choices

	Summary

	Final Remarks
	Personal Appreciation
	Scripts
	Feedback
	Suggestion
	Report
	Opinion

	Pictures
	References

