Exploiting the Challenges of the Adoption of
Serverless Computing

Author: Leandro Rodrigues da Silva
Advisor: Alfredo Goldman
Co-advisors: Joao Francisco Lino Daniel, Anderson Andrei da Silva

1. Introduction

Serverless is a paradigm that is becoming more popular in the software engineering
community in the last years, as an alternative to the conventional server-based cloud
solutions. In this paradigm, the developer no longer needs to worry about scaling or
managing resources and can focus on the business domain problems of the
application, while the cloud platform keeps responsible for dealing with these
challenges.

Also, serverless computing offers a low cost host service, since it has a
cost-by-execution policy. That means the cost of maintaining an application is no
longer tied to the time it's kept up, but to the amount of executions used. This allows
companies that are living an early stage of development to deliver their systems with
low cost.

Despite the benefits, Serverless still has some challenges to overcome, such as
testing, benchmarking, documenting patterns, task scheduling, etc. In this work we
aim to explore these challenges and run experiments and surveys with the goal of
deeply understanding these gaps and, finally, deliver a practical solution.

2. Background

Over the years, the way we architect software has been changing. Since the
problems to be solved become more and more complex, different approaches were
adopted. Some well known models of building complex systems are:

2.1 Server Architecture

The server architecture is one of the most used architectures through the web
together with the “client-server model”.

In this architectural style, the developers are responsible for both producing code
related to the domain of the application and to the infrastructure behind it. When the
application is done and deployed, it will run nonstop even when it's not being used.

This architectural style has the benefit of usually delivering responses with low
latency, since the server it's always up to respond. This approach brings some



disadvantages, such as: high cost, need of maintaining code unrelated to the core
business of the application and also a limited scalability [1].

2.2 Cloud computing

Cloud computing is the delivery of computing services and resources - such as
storage, networking, analytics, etc — over a network,being a private one or over the
internet. Currently, the following models are the main in the classification of cloud
computing [2]:

On-premises - in this model, the company maintains and manages the resources
that build the physical infrastructure below the Operating System. Developers are
responsible for managing hardware, allocating and scaling resources, configuring
Operating Systems, etc. This kind of model brings some advantages, such as having
full control over the infrastructure, which can lead to an environment that makes it
easier to conduct compliance policies. On the other hand, this kind of model incurs
some drawbacks, such as high costs, since it will need a fully prepared space to
allocate this infrastructure, and also specialized employees that will be responsible
for maintaining it.

Infrastructure as a Service (laaS) - In this kind of model, a service provider
manages the infrastructure and offers access to resources on top of it over the
Internet. The developers can access it through an Application Programming Interface
(API) . All the complexity of managing hardware and space is abstracted by the
providers, such as AWS, Azure and Google Cloud. They are responsible for dealing
with these challenges and the developers can keep focused on working in the core
of the application.

The usage of cloud computing has advantage sas the following:

e Reducing costs: cloud platforms reduce some of the efforts of providing
resources, such as installing, configuring and transporting hardware. This
leads to lower costs to the final consumer in comparison with the traditional
way of building infrastructure.

e Improving productivity of developers: after eliminating these challenges,
the developers are free to work in solving the problems of the application,
instead of dealing with problems related to managing the infrastructure.

e Providing high scalability: cloud platforms provide high scalability through
its services. The services are built-in with the possibility of horizontal and
vertical scalability in just a few clicks [3].

Platform as a Service (PaaS) - In this model, the third-party provides both the
framework on which engineers can build applications. It differs from Infrastructure as
Code in the way that it abstracts some components (like storage and network
services) to deliver an easier to use environment.



2.2 Serverless Architecture

Serverless is a cloud-native execution model for building and running applications
without server management. In this model, the cloud platform is responsible for
dealing with provisioning, managing and maintaining the infrastructure on behalf of
the server, so that the developers are responsible for plugging the business code
into this structure.

In this execution model, a concept commonly used is Function as a Service (FaaS).
FaaS is a type of cloud service that allows developers to deploy small applications
(or parts of a bigger one). The cloud platform receives a package containing the
code and wraps it into a stateless container, abstracting the logic of allocating
resources, scheduling tasks, setting up protocols and mainly, setting up a server. In
services like this - such as done by AWS Lambda - the cost of maintaining an
application is tied to how many executions a function receives [3].

As mentioned above, there are lot of open challenges to be tackled in the area
of developing complex systems for the cloud, specifically using serverless
architecture. So, we plan to exploit this area and propose some goals in this work.

3. Proposal

The goal of this work is to explore the current challenges of building systems using
serverless architectures. As of the time being, we do not have a well-defined
problem to attack. Nonetheless, we're set to explore the aforesaid context in order to
better understand the relevance of its contribution opportunities. Yet, under this
context we have the following points of interest:

e Documentation of design patterns - Currently, there is no centralized
source, not even deep study of documentation about design patterns related
to serverless architectures, so there is a huge gap when finding literature that
can guide the process of building this kind of system.

e Tools for developing in open source serverless platforms - There are lots
of tools to help developing in the biggest serverless services (AWS Lambda,
Azure Functions and Google Cloud Functions), but there is a huge gap when
we talk about tools for open source platforms (e.g OpenWhisk).

e Scheduling - Finding the best way of scheduling tasks inside the container of
a serverless platform is still a problem. There are various possible ways of
scheduling jobs to run inside these containers and finding ways of optimizing
the time of execution/cost relation is still a challenge for engineers that build
these platforms.



3.1 Methodology

The universe of serverless computing still has lots of challenges in different scopes.
As a relatively new technology, there are open gaps in development, patterns
documentation, optimization, benchmarking, etc [5]. Our immediate goal is to
explore the context under the perspective of a practitioner. To do so, we plan to
follow some experiments to find it and discover the contributions we will have made
by the end of the project. The main ideas to conduct these experiments are:

1. Dive deep into the community challenges - we also plan to take a closer
look at the problems that the open source community is facing nowadays.
This will be done by looking for possible gaps documented inside these open
source repositories.

2. Conduct surveys - we expect to conduct a survey with practitioners that
have daily contact with these technologies and find possible gaps that can be
solved in this work.

3. Running actual tests on platforms - we plan to explore open source
serverless platforms in order to understand some of the problems they
present. The following platforms may be investigated:

o AWS Lambda
o OpenFaaS
o OpenWhisk

4. Simulations - another approach will be to simulate real behaviors found
during the exploitation. With this in hand, we can study specific scenarios in
isolated environments. To do so, tools like Batsim [6] and SimGrid [7] will be
considered.

And after theses studies, we plan to:
5. Work on a solution to solve the problems we found in the previous
steps.
6. Work on monograph and presentation

3.2 Expected Results Resultados esperados

For this immediate goal, we expect to have a deep understanding of the problems
the serverles community is facing. With this in hand, we can use it as a base to
pursue a relevant contribution as the final goal of this work.

4. Schedule

We divided the work in the following tasks:
1. Dive deep into the community challenge
2. Conduct surveys
3. Running actual tests on platforms
4. Simulations



5. Decide and work on a solution.
6. Work on monograph and presentation

Task | Apr May |Jun [Jul [ Aug | Sept | Oct | Nov |Dec
1 X X X

2 X X X

3 X X X X X X

4 X X X X X

5 X X X X

6 X X X X

5. Bibliography

[1] Justin Garrison and Kris Nova. Cloud Native Infrastructure, 2018 - Patterns for
Scalable Infrastructure and Applications in a Dynamic Environment

[2] Redhat, 2018 -Types of Cloud computing.
https://www.redhat.com/en/topics/cloud-computing/public-cloud-vs-private-cloud-a
nd-hybrid-cloud#cloud-services

[3] Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable,
and Maintainable Systems, 2017 - Martin Kleppmann

[4] Hossein Shafiei, Ahmad Khonsari, Payam Mousavi, 2021 - Serverless
Computing: A Survey of Opportunities, Challenges, and Applications

[5] Batsim. https://batsim.readthedocs.io/en/latest/

[6] SImGrid. https://simgrid.org/



