UNIVERSITY OF SA0 PAuLo
INSTITUTE OF MATHEMATICS AND STATISTICS
BACHELOR OF COMPUTER SCIENCE

Sorting Hat

A Tool to Characterize the Architecture of
Service-Based Systems

Erick Rodrigues de Santana

FiNAL EssAy

MAC 499 — CAPSTONE PROJECT

Supervisor: Prof. Dr. Alfredo Goldman vel Lejbman
Co-supervisor: Prof. Dr. André van der Hoek (UC Irvine)

Co-supervisor: MsC. Jodo Francisco Lino Daniel (Unibz)

During the development of this work, the author received
financial support from FAPESP - grants #2020/16577-9 and #2021/14240-0.

S30 Paulo
2022

The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Acknowledgments

I would like to thank my supervisors for guiding me to produce this amazing work in a
field I love. The experiences and knowledge gained throughout the year mean so much to
me. I would also like to thank my colleagues and friends for helping me during my time as

a Computer Science student. Lastly, I thank my parents for always believing in me.

Resumo

Erick Rodrigues de Santana. Sorting Hat: Uma Ferramenta para Caracterizar a
Arquitetura de Sistemas Baseados em Servigos. Monografia (Bacharelado). Instituto

de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2022.

Desenvolver grandes sistemas de software néo ¢ trivial, pois esses sistemas devem satisfazer atributos
de qualidade como escalabilidade e manutenibilidade. Portanto, é importante que tenham uma arquitetura
que favoreca o cumprimento desses atributos. Compreender a arquitetura de um software, conhecendo
seus aspectos estruturais e padrdes, é essencial para poder satisfazer os requisitos de qualidade desejaveis.
No entanto, ha pouco suporte para caracterizar e avaliar a arquitetura de sistemas, especialmente aqueles
com arquitetura baseada em servicos. O Sorting Hat é uma ferramenta em desenvolvimento que auxilia no

processo de caracterizagio da arquitetura de sistemas baseados em servicos.

Desde o inicio de 2021, eu trabalho no desenvolvimento dessa ferramenta. O desenvolvimento do Sorting
Hat segue em duas dire¢des complementares: a visualizacdo e a coleta de dados. Durante o ano de 2021,
noés desenvolvemos um MVP (Protétipo Minimo Viavel) para a visualizagdo. No entanto, a visualizacio
teve alguns problemas relacionados a usabilidade e experiéncia do usuario, com muitas trocas de contexto
devido ao grande niimero de pontos de vista e fluxo de navegagio profundo. Além disso, as métricas que a
ferramenta implementou néo estavam atualizadas com o estado atual do modelo de suporte, CharM. Esta
monografia final detalha a implementacéo da nova versdo da visualizacdo do Sorting Hat e da coleta de

dados automatizada.

Palavras-chave: Arquitetura de Software. Microsservicos. Caracterizagio de Arquitetura. Coleta de Dados.

Abstract

Erick Rodrigues de Santana. Sorting Hat: A Tool to Characterize the Architecture of
Service-Based Systems. Capstone Project Report (Bachelor). Institute of Mathematics
and Statistics, University of Sdo Paulo, Sdo Paulo, 2022.

Developing large software systems is not trivial, as these systems must satisfy quality attributes such
as scalability and maintainability. Therefore, it is important that they have an architecture that favors
the fulfillment of these attributes. Understanding the architecture of a software, knowing its structural
aspects and patterns, is essential to be able to satisfy the desirable quality requirements. However, there is
little support for characterizing and evaluating systems architecture, especially those with service-based
architecture. The Sorting Hat is a tool under development that assists in the process of characterizing the

architecture of service-based systems.

Since the beginning of 2021, the student has been working on the development of this tool. The
development of the Sorting Hat goes in two complementary directions: the visualization and the data
collection. During the year of 2021, we developed a MVP (Minimum Viable Prototype) for the visualization.
However, the visualization had some issues related to its usability and user experience, with many context
switching due to the large number of viewpoints and deep navigation flow. Also, the metrics the tool
had implemented were not up-to-date with the current state of the supporting model, CharM. This final
monograph details the implementation of the new version of the Sorting Hat’s visualization and the

automated data collection.

Keywords: Software Architecture. Microservices. Architecture Characterization. Data Collection.

List of Figures

2.1
2.2
2.3

3.1

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20

Graph-based view of InterSCity’s modules.

Metrics list view of InterSCity. . .

Sorting Hat’s frontend architecture.

Methodology of the final work . .

Docker compose file example . . .

Response of the data collector prototype

OpenAPI file example
Backend overview
Backend packages structure . . .
Backend class diagram color key .
Domain entities class diagram . .

Domain behaviors class diagram .

Data collector class diagram: main classes

Data collector class diagram: docker-compose

Data collector class diagram: OpenAPI

Metrics extractor class diagram .
New frontend: Prototype

New frontend: Home page

New frontend: System registrationpage

New frontend: Endpoints registration page

New frontend: System page

New frontend: Synchronous calls through operations
New frontend: View filtered by depthlevel

Frontend components architecture

11

16
16
17
18
18
19
19
20
20
21
22
22
24
24
24
25
26
26
27
28

vii

Contents

Introduction

1 Literature Review

2 Sorting Hat First MVP

3 Goals and Methodology

4 Results

4.1 Backend: Data Collector and Metrics Extractor

4.1.1 Data Collection Strategies
4.1.2 Backend Architecture

4.2 New Frontend

5 Personal Experiences

6 Conclusion
6.1 Contributions
6.2 Future Work

References

11

15
15
15
17
23

31

33
33
33

35

ix

Introduction

Software architecture is an area that studies important concepts and practices to ensure
the quality and success of a software system, hence improving its chances to succeed as
project. A good architecture allows one to have a broad view on a software system and
its future evolution, and to estimate the infrastructure costs and delivery times. It also
influences the team organization and is the basis of system organization (Bass et al., 2013).
However, a software developed without a good architectural plan might be hard to keep up
during its evolution. A poor architecture is a major cause of impediment for the developers
to understand the software (FOWLER, 2019).

Even with an architecture plan, it might be a challenge for architects and engineers to
keep the system in accordance with it. Throughout the development process, architectural
deviations can happen, that is, decisions during the implementation that hurt the planned
architecture (PERrRY and WoLF, 1992). Therefore, it is valuable to keep the backlog of the
current architecture and its evolutions, because it allows the architects to identify those
deviations and to make the right decisions.

There are architectural styles that can guide an architecture. The microservice architec-
tural style has been used frequently in the context of software development. Although this
style has some benefits, there are challenges faced in its implementation. Those challenges
are strongly linked to the complexity of microservice-based applications (SOLDANTI et al.,
2018). As examples, there is the difficulty to determine the microservices’ granularity and
the distributed storage management (SOLDANT et al., 2018). In that scenario, the deviations
can be potentiated, in a way that characterizing the current architecture of a system can
be difficult and expensive to the development team.

In order to help software architects in the process of decision-making in favor of
evolution of their systems, we are developing the Sorting Hat — a tool to characterize
the architecture of service-based systems. In the MVP (minimum viable prototype), it
displays the system’s components, their characteristics and the relationship between them.
It also displays some metrics based on the characterization model called CharM, which is
under development by Rosa et al. (2020). The data available on Sorting Hat was collected
manually, which was a strenuous and a computationally automatable process.

The main goals of this work for the Final Capstone are two. The first one is to automate
the data collection of Sorting Hat, that can also apply the metrics of the model under
development by Rosa et al. (2020). The second one is to improve the existing visualization
tool and update its information to the most recent metrics in the CharM model.

This work is part of a undergraduate research sponsored by FAPESP that has been

0 | INTRODUCTION

ongoing since February 2021. From April 2022 to July 2022, the author had been in an
international internship at the Department of Informatics of the University of California,
Irvine (UCI) advised by the Professor Dr. André van der Hoek, who has expertise in
Software Engineering. Therefore, the first half of the work on this proposal was developed
as part of the research internship.

The rest of this monograph is structured as follows: Chapter 1 presents a conceptual
base for this project. Chapter 2 shows the tool’s first MVP, presenting its structural aspects.
Chapter 3 presents the goals of this project, as well as the methodology adopted to achieve
them. Chapter 4 shows the results achieved during the year. Chapter 5 describes the
personal experiences gained during the year. Finally, Chapter 6 describes the conclusion
and future work.

Chapter 1

Literature Review

Software architecture is a set of structures needed to understand and reason about a
system, covering software elements, the relationship among them and their properties
(Bass et al.,, 2013). It is also a discipline within software engineering that serves as a
bridge between software requirements - functional and non-functional - and the software
implementation. The development guided by a planned architecture is easier because it
facilitates the understanding, maintenance, and evolution of a system.

An important role to be played by development team members is that of software
architect. They are responsible for knowing the business domain, understanding the
development process, knowing technologies and methodologies, as well as having good
abilities with programming. That knowledge is essential, because the software architect is
also responsible for making decisions in uncertain contexts that affect the structure and
quality of a system.

To guide the software architects and engineers in the conception of software elements
and their interactions, it is common the adoption of architectural styles.

“An architectural style, then, defines a family of such systems in terms of a
pattern of structural organization. More specifically, an architectural style
determines the vocabulary of components and connectors that can be used in
instances of that style, together with a set of constraints on how they can be
combined.” (GARLAN and SHAW, 1994).

The microservices architectural style is described as an approach to developing a single
application as a suite of small services, each running in its own process and communicat-
ing with lightweight mechanisms, preferably asynchronous (FowLer and LEwi1s, 2014).
According to NEWMAN (2015), some main characteristics of that architectural style are the
following:

« Small services and limited by business domain;
« Low coupling among services;
« Fault tolerant services;

« Technological heterogeneity;

1 | LITERATURE REVIEW

 Automated deploy infrastructure.

However, developing systems following that architectural style is not trivial. Some
questions raised by NEwMAN (2015) are:

« How to define the size and the responsibilities of each service?
« How to ensure the data consistency among services?
« How to keep a low level of coupling among services?

Those questions can lead to uncertainties when implementing the system. In this
sense, architectural deviation can occur, that is, inconsistencies between the implemented
software and the planned architecture (PErRrY and WoLF, 1992). To restore the planned
architecture, there is the concept of architectural recovery, which consists in using reverse
engineer techniques to extract the implemented architecture from code artifacts (SiLva
and BALASUBRAMANIAM, 2012).

To evaluate the current architecture of a microservices system, there is a characteriza-
tion model called CharM (Rosa et al., 2020). That model, which is in constant evolution,
currently has its core around four dimensions, each one being a composition of a set of
metrics. The dimensions and their metrics are related to system components. A component
can be either a module or a service. A module is defined as a deployment unit, i.e., a set of
services that are deployed together. A service is defined as an application with cohesive and
well-defined responsibility, that implements functionalities related to business tasks.

The CharM dimensions and its metrics are as follows:

« Size: The goal is to compare the organization of different components of a system.
It has the following metrics:

Number of system’s components;

Number of services per module;

Number of operations per component;

Number of services with deployment dependency.

+ Data source coupling: The goal is to characterize the data source sharing strategy
between the components of a system. It has the following metrics:

— Number of system’s data sources;

Number of data sources per component;

Number of data sources that each component shares with others;

Number of data sources where each component performs write-only operation;

Number of data sources where each component performs read-only operation;

Number of data sources where each component performs read and write oper-
ations.

1 | LITERATURE REVIEW

« Synchronous coupling: The goal is to characterize the components synchronous
interactions of a system. It has the following metrics:

Number of clients that invoke the operations of a given component;
Number of components from which a given component invokes operations;
Number of different operations invoked by each depending component;

Number of different operations invoked from other components.

« Asynchronous coupling: The goal is to characterize the components asynchronous
interactions of a system. It has the following metrics:

Number of clients that consume messages published by a given component;
Number of components from which a given component consumes messages;

Number of different types of messages consumed by each depending compo-
nent;

Number of different types of messages consumed from other components;
Number of components that consume messages from the queue;

Number of components that publish messages in the queue.

Chapter 2

Sorting Hat First MVP

In order to help software architects in the process of decision-making in favor of
evolution of their systems, it is being developed the Sorting Hat — a tool to characterize
the architecture of service-based systems, which displays metrics of the characterization
model called CharM under development by Rosa et al. (2020).

The Sorting Hat’s development is guided by evolutionary prototypes. The first MVP
was the frontend focused on displaying a system’s metrics.

The first MVP had only data from InterSCity - a platform following the microservice
architectural style that assists smart-cities applications. The data were manually collected
in a case study to validate the characterization model of Rosa et al. (2020). This enabled to
develop the frontend without having the automated data collector.

That frontend was composed by 3 levels of visualization: a system, a module of the
system, and a service of the module. There was a page for each one of these levels. The
pages of a system and a module have two views: the graph-based view, which showed the
synchronous and asynchronous communications between the modules or services; and
the metrics list, which showed all the metrics that belonged to that level. Figures 2.1 and
2.2 present these views.

It is important to note that, although it did not automatically collect data from sys-
tems, the views generated by the frontend could already be pertinent to the architects
in future decisions. The graph visualization made explicit the synchronous connections.
By observing this, the architects can make decisions to keep them or to migrate them to
asynchronous, which are more consistent with the architectural style of microservices.
Synchronous communications can generate dependency between services at runtime and
increase coupling between them.

Viewing the list of metrics could also assist architects in making of decisions. For
example, Figure 2.2 illustrates the metric of modules sharing database, which says the
number of modules that share the same database. Sharing databases can generate incon-
sistencies, going against the adopted practices in the architectural style in question. Thus,
if Figure 2.2 showed modules sharing databases, architects could decide to remove these
shares or to keep them if necessary.

2 | SORTING HAT FIRST MVP

Data Collector

Resource Adaptor .-~

. Resoutge Discovery
.

Subtitle:

Module =~ ———» Synchronous call =-=---- » Asynchronous call

Figure 2.1: Graph-based view of InterSCity’s modules.

modules sharing DB O‘ ‘5

sync connections 0 mlllllllllllmllmlllllmlll ‘100

number of modules 5 modules

number of services 5 services

number of databases 8 databases

Figure 2.2: Metrics list view of InterSCity.

The first MVP architecture is represented in Figure 2.3. It illustrates an overview of the
page structure, showing the user’s navigation flow. Figure 2.3 also presents the components
that the pages use, as well as the interaction with external elements, such as the backend,
responsible for obtaining the data from the systems available on the platform.

To develop it, we used Nuxt.js, a framework for the construction of SPAs (single-page
applications), a modern way of developing websites in which navigation between pages is
made in a more fluid way, without the need for the browser to perform a new request to
the server where the site is hosted with every page change. The construction of SPAs is
also based on components, a part of the application that is common to several pages and
therefore can be reused. Also, Nuxt.js allows the developer to use plugins — libraries or
modules external to the application and that are made available to it.

In Figure 2.3, the three pages mentioned above are represented, which show the
different viewing levels. The pages of a system and a module use the graph and metric
components. For the graph visualization, we used the D3.js library as a plugin, which
allowed the construction of customized graphs from the raw data that the application

https://nuxtjs.org

2 | SORTING HAT FIRST MVP

intends to display.

Frontend

D3.js graph

1

Graph Metrics list

——
=

|::> Home HI> One system page Hl> One module page Hl> One service page
User l i i

System Data API Module Data API Service Data API
|
v v v
_Google spreadsheets <--------- Backend
. External
Page Plugin Siies
Component Server A —» B (A uses B)

pesar sy HTTP
|:(> Navigate 2 Request

Figure 2.3: Sorting Hat’s frontend architecture.

In this MVP, InterSCity data were available in Google spreadsheets. For the platform to
get them, some abstractions were created: each of the three pages uses a plugin to request
the data from the backend and transform it to the way the pages understand it. In this
way, each of the plugins acts as an abstraction from the server. The backend has a similar
goal: it requests data from Google spreadsheets and transforms it for objects that are
understood by each of the plugins. All these abstractions were created with the objective of
modularizing the application, providing testability gains, decoupling and scalability.

Chapter 3

Goals and Methodology

In the previously described MVP, the data collection for the Sorting Hat was done
manually, making that process harder. Also, there were some issues related to the frontend:
its usability was a bit complicated, with many contexts switching, and the metrics of
the model under development by Rosa et al. (2020) were not up to date. The goal of this
work went in two different yet complementary directions: automate the data collection of
Sorting Hat; and make the frontend more intuitive, easy to use and fluid to work with, as
well as update its information to the latest metrics from the CharM model.

To achieve the goals of this work, we followed the methodology described in this
chapter, illustrated in Figure 3.1.

. Integrate the metrics
Develop the new Ul wih extractor, data callector
P and the new Ul

Implementation

Study data collection Map the list of the latest
strategies Charl metrics
Study
Develop the metrics
Prototype a new Ul Develop the data collector axtractor

Image Key

‘ |—>| | Sequence

Figure 3.1: Methodology of the final work

11

12

3 | GOALS AND METHODOLOGY

In the study stage, we started studying the CharM model and its characteristics to see
the data we need to get in order to extract the information required by the model. We
noticed that we can measure the CharM characteristics using structural information that
can be static, which means that they do not change with the system in execution and,
thus, it is not necessary to have the system running to extract those metric. For instance,
CharM metrics such as "Number of operations per service", "Number of data sources",
and "Number of data sources that each service share with others" are both structural
information that can be collected using a static approach. These information depend on
discovering the services of a system, their operations, the data sources of a system, and

the usages of data sources by services.

With that in mind, we started studying some data collection strategies in order to
have the basis to develop a data collector. We have seen that there were two strategies
to be adopted: static and runtime analysis. Static analysis means to analyze source-code,
configuration files, and so on. On the other hand, runtime analysis is a way of analyzing
the behavior of a system that involves executing it, monitoring it by a certain period
and instrumenting it to extract data. For instance, it is possible to analyze the accesses
to databases, HTTP requests, and so on. The fact that most of the CharM characteristics
can be measured using structural information that can be static led us to choose for static
analysis rather than runtime analysis.

After the study stage, we went to the implementation stage that gave us three contri-
butions: the data collector, the metrics extractor and the improved visualization.

We developed a prototype for automated data collection. In that prototype, docker-
compose and OpenAPI files were analyzed. Docker-compose files are useful because it is
possible to know the services, databases and databases usages of a system by analyzing
them. OpenAPI files are useful because they describe the API of a service. Those tech-
nologies were chosen because of the familiarity with them. It is important to highlight
that the collector integrates with the data manually collected which are in use by the first
MVP.

We also developed a metrics extractor, which is responsible for automatically apply-
ing the CharM metrics to each system in the platform, thus, characterizing the system
according to the model. The results of the metrics extractor were compared to the metrics
values of the InterSCity system, whose data were manually collected, to see whether the
implementations were producing right results. This part was made during the period of
the international internship supervised by Prof. Dr. André van der Hoek.

To complete the implementation stage, we improved the Sorting Hat visualization.
This part was also made during the international internship supervised by Prof. Dr. André
van der Hoek. First, we made a prototype in order to see if we improved the tool usability.
The prototype was validated together with the supervisor. After prototyping, the next
step was to develop the new frontend. In order to stress the view to validate the new
frontend interface, we manually collected the data of a system called TrainTicket, a large
benchmark based on microservice architecture which contains more than 40 microservices.
The TrainTicket was recommended by a PhD student also advised by Prof. André.

Finally, having the metrics extractor, the data collector and the new frontend imple-

3 | GOALS AND METHODOLOGY

mented, the final next step to integrate these three parts.

13

Chapter 4

Results

The goals of this work were two: to automate the data collection of Sorting Hat; and
to make the frontend more intuitive, easy to work with, as well as update its information
to the latest metrics of the CharM model. The results of this work comprehend three
contributions:

1. A data collector, responsible for collecting system data for the tool;

2. A metrics extractor, responsible for automatically extracting the latest metrics of
the CharM model for every system in the tool;

3. An improved frontend, with a more interactive, elegant design that solves the us-
ability issues.

Contributions 1 and 2 were implemented together in a component called backend,
described in Section 4.1. Contribution 3 is described in Section 4.2.

4.1 Backend: Data Collector and Metrics Extractor

4.1.1 Data Collection Strategies

We defined a reduced scope for data collection in which we would collect a few data
needed by the tool. The scope consisted of discovering the services of a system, their
endpoints, the databases and the databases usages by services. With these data collected,
it is possible to extract the metrics related to the Size and Data Coupling dimensions from
the CharM model.

We developed a prototype for automated data collection with the defined scope. In
this prototype, docker-compose files were statically analyzed. These files are used as a
description of the containers that represent services and databases of a service-based
system, and they are also often used in software development. The docker-compose files
are obtained from a GitHub repository that contains a system data.

An example of a docker-compose file is illustrated in Figure 4.1. In it, there are four
containers: db, user_service, order_service and notification_service. It is pos-

15

16

4| RESULTS

sible to note that there is a boot dependency between db and the other three through
the property depends_on. Furthermore, user_service, order_service and notifica-
tion_service have an environment variable MONGO_URL which represents a database
connection with db. So, we may assume that user_service, order_service and notifi-
cation_service probably use db at runtime. This hypothesis can be confirmed through
static analysis of the source code of those services or through runtime analysis of it.

After analyzing the docker-compose represented in Figure 4.1, the collector prototype
would return a service-based system as represented in Figure 4.2.

services:

container_name: db

image: meongo:4.2

5 user_service:
a build: ./user_service

10 environment:

1 MONGO_URL: ‘'mongodb://db:27017"'
12 depends_on:

13 - db

15 order_service

16 build: ./order_service

17 environment:

18 MONGO_URL: 'mongedb://db:27017'
19 depends_on:

0 - db

22 notificatien_service:
build: ./notification_service
1 environment:
MONGO_URL: ‘mongodb://db:2T017"'
26 depends_on:
27 - db

Figure 4.1: Docker compose file example

Service-based system
user order notification
service service service
db
Image key " o
Service Database Database usage

Figure 4.2: Response of the data collector prototype

4.1 | BACKEND: DATA COLLECTOR AND METRICS EXTRACTOR

Also, the collector analyzes OpenAPI files in order to collect the endpoints of each
service in a service-based system. The OpenAPI Specification is a specification for a
interface definition language for describing, producing, consuming and visualizing RESTful
web services.

An example of a OpenAPI file is illustrated in Figure 4.3. In it, we have a list of
endpoints described in the key paths, which has the /users and /users/{userId} paths.
Each one of the paths has some HTTP Verbs (get, post, put or delete), making each
combination of path and verb an endpoint. Thus, the file represents a service having five
endpoints: GET /users, POST /users, GET /users/{userId}, PUT /users/{userId},
DELETE /users/{userId}.

openapi: 3.0.8@
info:

L5 I L I S

title: User Service APT

4 servers:
5 - url: http://userservice.com
6 paths:
fusers:
8 get:
9 summary: Returns a list of users.
16 post:
11 summary: Create a new user.
12 fusers/{userId}:
13 get:
14 summary: Return the user of id {userId}
15 put:
16 summary: Update data of user {userId}
17 delete:
18 summary: Delete user of id {userId}

Figure 4.3: OpenAPI file example

4.1.2 Backend Architecture

An overview of the backend architecture is illustrated in Figure 4.4. Every time the
backend is started, it fetches systems’ data manually collected from a spreadsheet and
saves those that have not yet been saved in the database. A client can access the content
of the backend through its API, composed by the following endpoints:

« GET /systems: to get all systems registered in the tool.

« GET /systems/{name}: to get more detailed information of a specific system with
name name.

« GET /systems/{name}/metrics:to extract and get the CharM metrics of a specific
system with name name.

« POST /systems: to collect system data from a remote repository.

17

18

4| RESULTS

« PUT /systems/{name}/endpoints: to register services endpoints.

; Google

- Spreadsheets !
A
R P Backend <
GET /systems
- vy GET /systems/{name}
- GET /systems/{name}/metrics Client
POST /systems
PUT /systems/{name}/endpoints
Image Key Vo
i\..____./j
S . 3
S
HTTP request Read / Write External service Database

Figure 4.4: Backend overview

The backend packages structure is illustrated in Figure 4.5.

% data_collector % persistence % metrics_extractor
domain CCER LR L e T ERCERIEE
< ..

Image Key

- A-
1 C]

Module A uses Module B

Figure 4.5: Backend packages structure

Internally, all the endpoints are handled by the server package, which uses the met-
rics_extractor and the data_collector modules. Both modules use the domain mod-
ule, which contains the model used to represent a service-based system in our tool. Also,
there is the persistence module, which is responsible for saving and retrieving the
system collected.

4.1 | BACKEND: DATA COLLECTOR AND METRICS EXTRACTOR

The domain entities model in the package domain is illustrated in the class diagram in
Figure 4.7, where all main classes of a service-based system are represented. It is important
to note that all class diagrams follows the color key represented in Figure 4.6.

Color Key
" Behaviors / . ;)
Entities Services Value Objects Factories
Interfaces

Figure 4.6: Backend class diagram color key

It is interesting to note that the Service class is the biggest entity, because it is the
central entity of our model. It contains data such as exposed and consumed operations,
used to identify synchronous communications between services, and channels publishing
and subscribing, used to identify asynchronous communications. Other entities such as
Module and Database are also represented in our model.

domain

Operation MessageChannel
3 3
Service Database
Module - name: String - usedBy: Map<Service, AccessType>
- responsibility: Strin - model: Strin
+ name: String P Y 9 g
- module: Module - namespace: String

- system: ServiceBasedSystem + addUsage(s: Service, accessType: String)

Usages: Set<D + petAccessType(s: Service): AccessType

ServiceBasedSystem - exposedOperations: Set<Operations

+ usages(): Set<Services

+ name: String - consumedOperations: Set<Operations

+ description: String - channelsPublishing. Set<MessageChannels

- channelsListening: Set<MessageChannel>

A4
+addUsage(db: Database, accessType: String) AccessType
+ expose(op: Operation) Read

Write

+ consume(op: Operation) ReadWrite

+ publishTo(channel: MessageChannel)

+ subscribeTo(channel: MessageChannel)

Figure 4.7: Domain entities class diagram

Besides the entities, the domain has some behaviors, illustrated in Figure 4.8. It is
interesting to note that the Domain uses the Visitor pattern to operate through the domain
entities when the extraction is happening. This makes the code cleaner because the pattern
lets one execute an operation over a set of objects with different classes by having a
visitor object implement several variants of the same operation. Also, the Domain has
a ServiceRepository interface, which exposes the basic operations needed to perform
data manipulations on the entity Service and its dependent classes.

19

4| RESULTS

domain

<<lnterfaces:
Visitable

+ accept(v: Visitor)

Iy

[«interface»
"""""""" Visitor
Entities
A

|

i <<interfacesx>

i ServiceRepository

|

""""" -+ findAllBySystem(name: String): Set=Service=
+ findAllSystems(): Set<ServiceBasedSystem:
+ savehll(services: Set<Services)

Figure 4.8: Domain behaviors class diagram

The class diagram of the data_collector module is represented in Figure 4.9.

domain

«interface= »
ServiceRepository ~ TR > Entities

data_collector

RegisterNewSystem RegisterServicesEndpoints
<<Interfaces>

CollectionComponentsFactory

+ factory: CollectionComponentsFactory + factory: CollectionGomponentsFactory

repository: ServiceReposito +-----2= + createDataFetcher(): DataFetcher | repository: ServiceReposito
" i & + createDataParser(): DataParser " R v
createConverterToDomain(): GonverterToDomain
+ execute(url: String, filename: String) * 0 + execute(systemName: String, payload)
)
H
h ;]
i H i
4 v 4
<<Interfacesx <<lnterfaces> <<interfacesx
DataFetcher DataParser ConverterToDomain<T>
+ execute(url: Sring, filename: String): FetchResponse + execute(response: FetchResponse): SpecificTechnology + execute(technology: SpecificTechnology): Set<T=

v, | v

FetchResponse ’
FetchDataFromRemateRepository

+ systemName: String SpecificTechnology

+ data: String

Figure 4.9: Data collector class diagram: main classes

There are two important services in Figure 4.9. One is the RegisterNewSystem, which
is responsible for registering a new system given an url and a filename. The other one
is the RegisterServicesEndpoints, which is responsible for registering the endpoints
of each service in a system. Both services use an abstract factory interface called Col-
lectionComponentsFactory. The implementations of that interface create instances of
three important objects to collect the data the collector needs:

4.1 | BACKEND: DATA COLLECTOR AND METRICS EXTRACTOR

« DataFetcher: an interface which its implementations are responsible for fetching
the data from a remote source.

+ DataParser: an interface which its implementations are responsible for parsing the

data fetched.

« ConverterToDomain: an interface which its implementations are responsible for
converting the data parsed to our domain model.

The purpose of these abstractions is to give extensibility to the tool to obtain data from
several specific technologies. In our case, we have docker-compose and OpenAPI as our
specific technologies, but these abstractions give us the power to add more technologies if
we want to expand our data collection strategies.

Figure 4.10 shows the implementations of those abstractions in the case of docker-
compose. It is important to note that new entities were created to represent the docker-
compose file. Also, there is a concrete factory that implements CollectionComponents-
Factory called DockerComposeCollectionComponentsFactory, which create instances
of the services ParseDockerCompose and DockerComposeToDomain, which are imple-
mentations of the DataParser and ConverterToDomain interfaces, respectively.

data_collector

«interfaces «interfaces «interfaces
CollectionComp tsFactory ConverterToDomain DataParser

: & A
| 1 1
| 1 1
i
|
i DockerComposeToDomain ParseDockerCompose
|
|
s A A

DockerComposeCollectionComponentsFactory {:u

DockerCompose DockerContainer
DockerNetwork + name: String + build: String
+ driver; String e +version: String + image: String
+ Bervices: Map<String, DockerContainers + depends_on: List<String=
+ networks: Map<String, DockerMetwork= + environment: Map<String, String=
+ isDatabase(): Boolean
+ IsService(): Boolean
SpecificTechnology

Figure 4.10: Data collector class diagram: docker-compose

Figure 4.11 shows the implementations of the abstractions in the case of the OpenAPI. It
follows the same structure as in the case of docker-compose: there is a model to represent a
OpenAPI file, a concrete factory called OpenApiCollectionComponentsFactory, which
implements CollectionComponentsFactory and is responsible for creating instances
of the services ParseOpenApi and OpenApiToDomatin, which are implementations of the
DataParser and ConverterToDomain interfaces, respectively.

21

4| RESULTS

data_collector

«interface» «Iinterface» «interface»
CollectionComponentsFactory ConverterToDomain DataParser
A & 8
' H '
i
|
! OpenApiToDomain ParseOpenApi

‘OpenApiCollectionComponentsFactory

OpenApi

+ openapi
+version

+ servers

+ paths: Map<String, Map<String, Any>=

!

SpecificTechnology

Figure 4.11: Data collector class diagram: OpenAPI

The metrics_extractor module in the backend is responsible for extracting all the
CharM metrics for every system in the tool. The extraction results are available through
the endpoint GET /systems/{name}/metrics in the backend server.

Figure 4.12 illustrates the Metrics Extractor class diagram.

domain

I S— «interfaces
«interfaces T Visitor
ServiceRepository [T > A
A
metrics_extractor prmmemeee !
ExtractSystemMetrics
+ repository: ServiceRepository ConcreteMetricExtractor

+ execute(systemMName: Siring): Extractions i
- v
Extractions <<lnierfaces>
MetricExtractor = L---ooooooo-

«interface»

+ size: Map<String, ExtractionResult= By ExtractionResult

+ dataCoupling: Map<String, ExtractionResults + getMetricDescription(): String 45
+ getResult(): ExtractionResult

+ syncCoupling: Map<String, ExtractionResult=

+ asyncCoupling: Map<String, ExtractionResult=

ConcreteExtractionResult

Figure 4.12: Metrics extractor class diagram

4.2 | NEW FRONTEND

The ExtractSystemMetrics class is the entry point to execute the metrics extraction.
When the execute method is called, all the ConcreteMetricExtractor classes are in-
stantiated. A ConcreteMetricExtractor class is responsible for extracting one specific
CharM metric. All of them implements the MetricExtractor interface, which provide
methods for getting the metric description and the extraction result. Extraction results
may differ for each MetricExtractor implementation, and because of this, ConcreteEx-
tractionResult classes were created.

The backend is deployed in an Amazon EC2, which can be accessed through this link.
It has almost 5300 lines of code written. To develop it, we used Kotlin and Spring as Web
Framework. The code is open-source and can be accessed through this link.

4.2 New Frontend

We noticed that the frontend had many context switching, which compromise the user
experience by making the user perform a considerable number of clicks. For instance, we
had to navigate through 3 links if we wanted to see the services and databases information
of a system.

We would like that a single view had as much access to different information as possible,
so we prototyped a new frontend in a tool called Figma. This tool allows us to create
professional prototypes and is commonly used by designers. It also allows us to create
interactive prototypes.

A screen of the prototype is illustrated in Figure 4.13. It is possible to see that everything
is now in a single view. The idea of this view is to allow the user to see all system elements
(services, databases, synchronous and asynchronous calls) and its metrics. The user can
complement the initial visualization by selecting the CharM dimensions on the left side
of the screen. For instance, if the user click on the data source coupling dimension, the
databases and usages by services will be shown in the visualization. The interactive version
of the prototype is available at this link.

After making the prototype using Figma, we developed the new frontend version. A
view of the home page is shown in Figure 4.14. It is possible to view the architecture of a
system by clicking on it in the systems list. It is also possible to register a new system in
the tool.

The system registration page is shown in Figure 4.15. To register a new system, the
user needs to inform the remote repository URL and a docker-compose filename, from
which the tool will identify the services, databases and databases usages. After clicking on
the register button, the view is changed to support endpoints registration for each service
identified, as shown in the example of Figure 4.16. In that page, the user can optionally
inform the OpenAPI files for each service identified. After that, the user can finish the
system registration by clicking on the register button.

23

http://ec2-3-239-58-239.compute-1.amazonaws.com:8080
https://github.com/the-sortinghat/backend
https://www.figma.com/proto/cNSflBwV033JPBY2uh7lvt/sortinho?node-id=63%3A3&starting-point-node-id=63%3A3

24

4| RESULTS

H

Dimension:
D Size
D Data source coupling
D Synchronous coupling
[]

Asynchronous coupling

InterSCity

© 0 RO,
O

O

Metrics:

Number of system’s components:

* 4 modules

« 5 services
Number of services per modules: 1,25
Number of services with deployment
dependency: 2

O Service 8 Database ———— Synchronous call

\:‘ Module — R/ Serviceuses R:Read . N

database W: Write

Asynchronous call

Figure 4.13: New frontend: Prototype

InterSCity —

InterSCity platform, an
open-source, microservices-
based middleware to
support the development of
smart city applications and
to enable novel,...

X

Welcome to Sorting Hat!

Search...

TrainTicket —

The project is a train ticket
booking system based on
microservice architecture
which contains 41
microservices.

Register new system

Figure 4.14: New frontend: Home page

Register new system

Repository URL: | ‘

Docker-Compose filename: ‘

Figure 4.15: New frontend: System registration page

4.2 | NEW FRONTEND

Register endpoints

OpenAPI filename for service user-service: | |

OpenAPI filename for service catalog-service: ‘ |

OpenAPI filename for service search-service: | |

OpenAPI filename for service order-service: | |

OpenAPI filename for service payment-service: ‘ |

OpenAPI filename for service notification-service: | |

Figure 4.16: New frontend: Endpoints registration page

A view of the system page is shown in Figure 4.17, which shows the page for a system
called TrainTicket, a benchmark system based on microservice architecture which contains
more than 40 microservices. The reason why we decided to add this system was to stress
the view, i.e, to display a large amount of information, so we can validate the new frontend
interface. The TrainTicket was the largest benchmark microservice system we found. Its
data were collected manually from its documentation and put in the spreadsheet used

as the data source of the Sorting Hat. The TrainTicket documentation is available at this
link.

From Figure 4.17, it is possible to notice that there is a difference between the prototype
version and the implemented version, as we decided to make some changes in the design
and functionality as we were implementing. It is possible to see that there are no boxes rep-
resenting modules in the visualization. Instead, we decided to add an option called "Group
services by deployment unit (Modules)", which replaces the services in the visualization
with modules, which is represented by the same object as services. We decided to make
this change because it makes the view simpler, as it does not have the boxes coexisting
with services.

It is also possible to see that there is an option called "Link synchronous communi-
cations through operations"”, which changes the default behavior of the sync coupling
dimension - link services directly — to show the operation from which the given syn-
chronous call is being made, as shown in Figure 4.18. This can be a valuable information
for the user to understand more the synchronous communications between services. The
operations objects were not in the prototype version, but we decided to add it as we noticed
that the Size dimension is about the amount of operations a system component has.

25

https://github.com/FudanSELab/train-ticket/wiki
https://github.com/FudanSELab/train-ticket/wiki

26

4| RESULTS

Group services by deployment unit (Modules)

Click on a service and type a depth level you want 1o see.

et mongs

e —

Dimensions: Size Data coupling Sync coupling

Link synchronous communications through operations

TrainTicket

Async coupling

ety e

0 Q

| 3 b s oA

mveiz-seic g o Svice

[—

©

Metrics

Global:

Number of system components

43 services and 43 modules

Number of services with deployment dependency
0

® o
o ol o

" A g Largest service (27 operations)
o " 3:5 19 sosons (D)

ts-order-service
e o i v
€ ’ , O

U < v 2 e =

Smallest service (0 operations)

ts-common, ts-news-service, ts-ui-dashboard, ts-ui-test

{L — N Number of components that consume messages from the
ey queue
O = modules: 0
T i * services: 0

Number of components that publish messages in the queue
Image key
= modules: 0
* services: 0
() g . & .s ’ ’ &
A Ay A g
Service Database Operation poses operation
o Py)
L4 A4 &

Service A consumes an operation that Service B exposes Service A publishes a message that Service B consumes

Figure 4.17: New frontend: System page

— TrainTicket

Dimensions: Size Data coupling Sync coupling Async coupling

Link

through
Group services by deployment unit (Modules)

Click on a service and type a depth level you want to see.

Depthfs | Metrics

’ Global:
GET fapi/v1/orderservi€e/orders+de
O Number of system components
sectlity-service .
- te-sec’iiE GET /api/v1/orderservigeorder/+departureTime- 43 services and 43 modules
—]
-
POST api/v1.stationservice/stations namelist
s-security-mongo

Number of services with deployment dependency

0
GET /apisv1/orderservice/order/securityl + checkDate + / + accountld
Largest service (27 operations)
POST /api/v1/arderservice/arderr is-order-service
GET /api/v /orderOtherService/orderOther/security! + checkDate + / + accountid
ts-order-service Smallest service (0 operations)

ts-common, ts-news-service, ts-ui-dashboard, ts-ui-test

Number of components that consume messages from the
Qqueue

s-order-mongo

= modules: 0
'y = services: 0
foa, ST (TR

tsenler-ntherservicr

Number of components that publish messages in the queue
Image key
* modules: 0
* services: 0
o Y o)
O 8 & O—B O0—¢ o ©
Service Database Operation poses operation
Py oy o
(O © ()

Service A consumes an operation that Service B exposes Service A publishes amessage that Service B consumes

Figure 4.18: New frontend: Synchronous calls through operations

4.2 | NEW FRONTEND

Sometimes we can be analyzing a large system with a huge amount of information,
which makes it difficult to understand its architecture in the Sorting Hat. For instance, we
may only be interested in a set of services and their interactions. With this situation in
mind, we added a filter option, which can be used by clicking in a service in the graph and
typing a depth level. Then, the view will be filtered to display only the interactions with
the clicked service until it reaches the depth level typed, as shown in Figure 4.19.

It is possible to see in Figure 4.19 that the microservice ts-food-map-service was
selected and the depth level 2 was typed, which made the view be filtered and easier to
analyze. When a service is selected by clicking on it, the CharM metrics specifics for that
service is shown, so we can understand more that specific service and the other services
and databases liked to it.

— TrainTicket
Dimensions: Size Data coupling Sync coupling Async coupling
Link synchronous commi through operations
Group services by deployment unit (Modules)
Click on a service and type a depth level you want to see. Depthjz | Metrics of the service ts-food-map-service: B
Number of operations
6
@ =
-—

ts-station Rvice ts-food-mongo Number of data sources that it shares with others

@ ‘ o

>
. O , Number of data sources
1s-food-service 1
ts-food-map-service
ts-faod-map-mongo

ts-rebook-service

ts-travel-service

([

Number of data sources where it performs Read operations
@ () :
ts-preserve-other-service
ts-preserve-service

Number of data sources where it performs Write operations
0

Number of data sources where it performs ReadWrite
operations

Image key !

o s e o= 1

Service Database Operation Senvice accesses database Service i p is asenvice -

. ‘ ‘ A Number of clients that invoke the operations of it

(a) (=) () e
& L4 &

Service A consumes an operation that Service B exposes Senvice A publishes a message that Service B consumes

Figure 4.19: New frontend: View filtered by depth level

The components architecture of the new frontend is illustrated in Figure 4.20, which
shows the pages the user can navigate to, as well as the web components used by these
pages and the interactions of components with hooks and services — responsible for
handling the logic in the application.

When the user goes to the system page, it uses the SystemService - a separate file
that handles fetching the data from an external API, in our case the Backend. The pages
fetches the system data and its metrics through the System service. After that, the page
distributes the data to the Graph component — which handles displaying the system data

27

28

4| RESULTS

as a graph — and the MetricsWrapper component — which takes the system metrics and
display them. The page also uses the DimensionSelector component, which handles the
selection of CharM dimensions.

The Graph component uses a hook called useGraph, responsible for handling the logic
of the interaction with the graph and for configuring an auxiliary library to display the
graph. The library used to display the graph is the force-graph, which is really easy to
configure and use. The useGraph hook receives the raw data of the system, and it needs
to transform them into a data structure that can be used by the library. It does this by
using a service called GraphDataProcessor.

Finally, the MetricsWrapper component uses a hook called useMetrics, which han-
dles the logic of filtering and displaying the metrics list.

Frontend

page

Systemn registration

o

T== =

User

:{>{ System page }—»{ System service } ————————————— -{ Backend ‘

!

DimensionSelector

GraphDataProcessor }1—{ useGraph ‘

}

MefricsWrapper

‘ useMetrics ‘

Image Key

‘ Page ‘

‘ Server ‘

Component

I:(>

Mavigation

‘ Hook

A—»B

Auses B

______________ >

HTTP Request

Figure 4.20: Frontend components architecture

The new version of the frontend was built using Next.js, a React framework that allows
the construction of SPAs (single-page applications), a modern way of developing websites

https://github.com/vasturiano/force-graph
https://nextjs.org/

29

4.2 | NEW FRONTEND

in which navigation between pages is done more fluidly, without the need for a browser
make a new request to the server where the site is hosted at each page change.

The new version of the frontend is deployed at this link, and the code is open-source
and is available at this repository link. It has more than 1700 lines of code written.

https://thesortinghat.vercel.app/
https://github.com/the-sortinghat/new-frontend

Chapter 5

Personal Experiences

Since the beginning of 2021, I have been working on the development of this tool. In
that year, we had the opportunity to write a paper about the first MVP and we presented the
work in the CBSoft’s Undergraduate Research on Software Engineering Competition, which
we were awarded as the third best Undergraduate Research on Software Engineering.

With the great results achieved, Prof. Dr. Alfredo Goldman talked to Prof. Dr. André
van der Hoek, from the University of California in Irvine (UCI), about the project, which
was received with interest by him. Then, we discussed about an opportunity to do an
exchange abroad from April 1, 2022 to July 31, 2022, so Prof. André and I could continue
developing the tool.

Professor Dr. André van der Hoek is co-author of the books “Software Design Decoded:
66 Ways How Experts Think” and “Studying Professional Software Design: a Human-
Centric Look at Design Work”, the only published books that detail the practices of software
design professionals. He was recognized as Outstanding Scientist by the ACM in 2013
and received the Award for Excellence in Engineering Education Courseware in 2009.
Additionally, in 2005, he was honored Professor of the Year at UCI for his outstanding and
innovative educational contributions. Additional information about the work of Professor
André van der Hoek can be found in his profile at Google Scholar and in DBLP.

Therefore, considering the vast experience that Professor Dr. André van der Hoek has
in the areas of Software Architecture and Experimental Software Engineering, he was able
to contribute to the enrichment of our project. Through his in-depth knowledge of the
day-to-day life of software architects, he was able to contribute to making the Sorting
Hat platform a really practical and useful guide for software development professionals.
Furthermore, through the values cultivated by the UCI Department of Informatics and the
Software Design and Collaboration Laboratory, our project was enriched by exchanging
experiences and ideas with other students.

I arrived in California on March 29th, and the first in-person meeting with Prof. André
happened on April 1st. We got along very well during the internship period, and his
collaborations were very rich to the project. Our interactions used to happen twice a week:
one in-person and another one virtually by text messages.

31

https://scholar.google.com.br/citations?hl=pt-BR&user=h3L7zkoAAAAJ&view_op=list_works&sortby=pubdate
https://dblp.org/pid/h/AndrevanderHoek.html

32

5 | PERSONAL EXPERIENCES

We used to do a group meeting in-person at the university on Mondays, with his
other advisees, composed mostly of graduate students. Those group meetings were really
valuable to me, because I had opportunities to interact with other students and learn about
other researches, as well as I had the opportunity to explain my research to them, which
helped me to improve my communication skills in a foreign language.

I would go to the university twice a week, usually on Mondays and Fridays. On the
other week days, I would go to a library next to the house I was living in. I preferred to do
that because I was living in a city called Santa Ana, which was almost one hour by bus
far from the University of California, Irvine. Thus, I could save some time of my day. On
weekends, I used to meet some places in order to explore California, live the American
culture and improve my English skills.

During the beginning of the internship, I faced some difficulties regarding the foreign
language, getting used to a new culture, and living with other people. I stayed in a shared
bedroom in a shared house, and the house had many people, which often put me in
situations that required greater language skills. Because of that, I got in touch with different
cultures such as Mexican and from other Latin countries. Other difficulties faced were
related to daily life, such as going to supermarket, taking a bus, and so on.

The lessons I learned from this international internship experience were many. I
had the opportunity to work together with a renowned professor in my area of interest,
and interact with other graduate students, which made me improve my communication
skills, and gain confidence. Also, I learned a new way of thinking, a new way of looking
at problems and solving them. Professor André brought new ideas for the project and
sometimes put me in situations that required me to think in other ways.

By living in another country on my own, with different people and a different culture,
I could learn how the real life is. I learned how to deal with people who think differently
from me, and I learned how to deal with daily problems, which is part of everyone’s

life

All these lessons learned really make me feel proud of what I did professionally, how
I dealt with the daily situations, and most important, the person I became after this
international internship experience.

Chapter 6

Conclusion

6.1 Contributions

In this final essay, we showed the Sorting Hat, a tool to characterize the architecture of
service-based systems. This tool has been under development since 2021. In that year, we
developed a MVP for the visualization of the tool. Despite achieving great results in that
time, we noticed that the visualization had some issues regarding its usability, not being
intuitive to understand, and the CharM metrics were not up-to-date. In addition, the data
available in the tool were manually collected, in an arduous process that is computationally
automatable. So the goals of this final work were (1) to provide an automated data collection
to the Sorting Hat, and (2) to improve the visualization of the tool and update its information
to the most recent CharM metrics.

In this work we have presented the improvements and updates in the Sorting Hat,
which reach the proposed goals. We have provided some data collection to the tool. Now,
the tool analyzes docker-compose and openapi files to collect the services, endpoints,
databases and databases usages of a new service-based system registered in the tool. We
have also solved the issues related to the tool usability: now, all information take place in a
single page, with a reformulated, more elegant design. Also, there are many filter options
in order to make the visualization more interactive. In addition, the CharM metrics are
up-to-date and automatically extracted for every new system in the tool.

6.2 Future Work

Although we have achieved the goals proposed, there is still a need to improve the tool
in several aspects. It is still not possible to collect data related to communications between
services (synchronous and asynchronous). Therefore, for a future work, it is suggested to
study new data collection strategies to collect the remaining data the tool needs.

33

References

[Bass et al. 2013] L. Bass, P. CLEMENTS, and R. KazmAN. Software Architecture in Practice.
3rd. Addison-Wesley, 2013 (cit. on pp. 1, 3).

[FOowLER 2019] Martin FOWLER. Software Architecture Guide. Url: https://martinfowler.
com/architecture/, 2019 (cit. on p. 1).

[FowLER and LEwis 2014] Martin FOWLER and James LEw1s. Microservices. Url: https:
//martinfowler.com/articles/microservices.html, 2014 (cit. on p. 3).

[GARLAN and SHAW 1994] David GARLAN and Mary SHAW. “An introduction to soft-
ware architecture”. In: Carnegie Mellon University CMU-CS-94-166 (1994) (cit. on

p- 3).

[NEwWMAN 2015] Sam NEwWMAN. Building Microservices: Designing Fine-Grained System.
1st. O’Reilly Media, 2015 (cit. on pp. 3, 4).

[PERRY and WoLF 1992] Dewayne E. PERRY and Alexander L. WoLr. Foundations for
the Study of Software Architecture. ACM SIGSOFT Software Engineering Notes,
1992 (cit. on pp. 1, 4).

[Rosa et al. 2020] T.Rosa, A. GoLpMmaN, and E. GUERRA. Modelo para Caracterizagao e
Evolugao de Sistemas com Arquitetura Baseada em Servigos. Workshop de Teses e
Dissertagdes do CBSoft - WTDSoft 2020, 2020 (cit. on pp. 1, 4, 7, 11).

[SiLva and BALASUBRAMANIAM 2012] Lakshitha de Siiva and Dharini BALASUBRAMA-
N1aM. Controlling software architecture erosion: A survey. Journal of Systems and
Software, 2012 (cit. on p. 4).

[SoLDANT et al. 2018] Jacopo SOoLDANI, Damian Andrew TAMBURRI, and Willem-Jan Van
Den HEUVEL. “The pains and gains of microservices: a systematic grey literature
review”. In: Journal of Systems and Software 146 (2018) (cit. on p. 1).

35

https://martinfowler.com/architecture/
https://martinfowler.com/architecture/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

	Introduction
	Literature Review
	Sorting Hat First MVP
	Goals and Methodology
	Results
	Backend: Data Collector and Metrics Extractor
	Data Collection Strategies
	Backend Architecture

	New Frontend

	Personal Experiences
	Conclusion
	Contributions
	Future Work

	References

