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Abstract

Trypanosomatids are endoparasitic protozoan whose genes are organized into poly-

cistrons and have constitutive transcription along the whole cell cycle. Those facts suggest

that con�icts between DNA replication and transcription machineries yield increased

replication origin �ring in the cell cycle S phase. To investigate that hypothesis, our group

developed a DNA replication model for Trypanosoma brucei that was calibrated with MFA-

seq data and used it to predict and validate that increasing constitutive transcription levels

indeed increase the number of �red origins. More recently, it was concluded the DNA

origins mapping for T. cruzi through MFA-seq assays, which unveiled that several origins

are located in coding regions of the dispersed gene family 1 (DFG-1), a family of genes that

is relevant for the parasite life cycle. Once DFG-1 genes have high genetic variability, one

possibility is that con�icts between DNA replication and transcription machineries are

responsible for such variability, which implies that the origin �ring distribution in T. cruzi

is conditioned by the genomic organization of that parasite. In this work, we proposed to

investigate such question through computational modeling of the DNA replication dynam-

ics of T. cruzi. We adapted for T. cruzi the dynamic model of DNA replication programming

originally developed for T. brucei, in this process promoting several improvements on

the original simulator, for instance, a more suitable data compressor. With the improved

simulator, we calibrated a T. cruzi model with MFA-seq data and carried out a number of

computational experiments, assessing the correlation between con�ict regions and DFG-1

locations. Finally, we developed a novel, genetic algorithm-based simulator for studies of

genomic organization evolution in T. cruzi. With all those accomplishments, we expect to

be able to assess the interplay between replication-transcription con�icts and evolution of

genomic organization, thus helping to understand one of the underlying mechanisms that

guarantees the successful invasion and survival of the parasite in its host.
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Chapter 1

Introduction

The family of trypanosomatids is composed by obligate endoparasitic protozoa, some
with biomedical relevance, as with Trypanosoma cruzi and brucei (Etiological agents for
the Chagas disease and sleeping sickness, respectively). As the sicknesses caused by
this family of protozoa are considered by the World Health Organization as neglected
diseases (Andrade et al., 2014), the biology of these organisms is strongly studied aiming
the discovery of molecular targets, seeking pharmacological interventions for prevention
and treatment of infections. Those studies have revealed that trypanosomatids have some
quite peculiar characteristics, such as having their genes organized into polycistrons (i.e.,
linear gene sequences that are transcribed into a single RNA molecule) and the presence
of constitutive transcription (i.e., that occurs without transcription factor regulation in
its promoter sequence) during the full cell cycle. Because of this, those organisms have a
DNA replication dynamic that displays some very speci�c properties.

Eukaryotic DNA replication, such as in protozoa, is started from genomic sites named
replication origins. On each of these sites, a pair of replication machineries named repli-
somes are attached and head to opposite directions. We call this phenomenon a �ring of
the replication origin. Transcription is done through the action of an the RNA polymerase
enzyme (RNAP). The genomic organization in trypanosomatids leads to the ocurrence of
con�icts between DNA replication and transcription machineries. There are two types
of these con�icts: head-to-tail and head-to-head collisions (García-Muse and Aguilera,
2016). Head-to-tail collisions are easily resolved by derailing the RNAP molecule from
the DNA strand. On the other hand, head-to-head collisions cannot be solved in a simple
manner, and may cause a collapse of the replisome or even a break of the DNA strand.

Aiming to study the impact of the con�icts between DNA replication and transcription
con�icts on the DNA replication dynamics of T. brucei, a stochastic computational model
was developed to simulate the S-Phase processes of this organism (M. d. Silva et al., 2019)
(Figure 1.1). This model was based on another DNA replication dynamic model developed
previously (Gindin et al., 2014), and callibrated with experimental data available in the
literature, such as the distribution of putative sites of replication origins that was acquired
via MFA-seq assays (Tiengwe et al., 2012). Other properties of the process, like the expected
replisome speed and S-phase duration were also available (Calderano et al., 2015; M. S.
d. Silva et al., 2017). Using a simulator called ReyDyMo, which originally was coded in
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Python and latter ported to C++ for better computational performance (G. R. C. Silva,
2017; Scholl BB, 2018), simulations using this model with many di�erent parameters
showed that higher constitutive transcription levels result in higher con�ict counts, that
causes higher replication origin �ring rates. This increase in �ring rates does not, though,
produces signi�cant di�erences in the time required to replicate the entire genome of this
parasite, a prediction that was experimentally con�rmed (M. d. Silva et al., 2019).

Figure 1.1: T. brucei DNA replication dynamic model. In this example, we have a chromosome

segment with two replication origins (�1 and �2). When we simulate DNA replication and transcription

at the same time, if there is a head-to-head collision between DNA replication (replisome) and tran-

scription (RNAP) machineries, then both are released from DNA, leaving an un�nished replication. In

the case of this example, a third replication origin, located between �1 and �2, would be required to be

�red in order to �nish the interrupted replication. Image extracted from M. d. Silva et al., 2019, with

the authorization of a corresponding author.

More recently, in a study lead by Dr. Maria Carolina Elias (Cell Cycle Laboratory,
Butantan Institute), MFA-seq assays were concluded for the T. cruzi. When comparing the
chromosome DNA replication pro�le acquired by these assays with polycistron locations
in this parasite, a large number of putative origins were found in coding regions for genes
in the dispersed gene family (DGF-1) (Araujo et al., 2020). DGF-1 genes are fundamental
for the lifecycle of the T. cruzi, as they encode cell surface proteins that are important for
successful infection and survival of the parasite in the host. Considering the high genetic
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variability of the DGF-1 genes, a possible cause of it is due to replication-transcription
con�icts. This is an open question that could be investigated with computational models
similar to the ones we successfully employed with the T. brucei.

1.1 Objectives
The main objective for this work was the study of the DNA replication mechanisms

for the Trypanosoma cruzi using computational modeling and statistical analysis. To this
end, we needed to adapt the stochastic model previously used for analysis regarding T.

brucei and also to improve its implementation, the ReDyMo simulator.

A more speci�c objective was the assessment of the hypothesis that the genetic vari-
ability of the DGF-1 gene family is in�uenced by collisions between replication and
transcription machineries, and that the genomic topology of the organism evolved to
maximize such type of collisions. This goal was divided into two tasks:

• First, to carry out simulations for each input parameter set, using real experimental
data from public biologic data repositories, and also to perform statistical analysis
on the results.

• Second, to implement and run a population evolution simulation with random
starting topologies and apply selective pressures to see which topologies eventually
evolve from it.

1.2 Outline of this work
The remainder of this capstone project report is organized as follows:

• In Chapter 2, we will introduce fundamental biologic concepts important for the
understanding of this work.

• In Chapter 3, we will discuss the model and its implementation, as well as provide
data analysis methods that were used throughout this work.

• In Chapter 4, we will present and analyze the obtained results in a concise and
descriptive manner.

• Finally, in Chapter 5, we will recall the main contributions of this work, and also
add some extra thoughts about future activities in this research line.
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Chapter 2

Fundamental Concepts

This work requires understanding of biological concepts that may not be clear for
readers that are not familiar with biological sciences in general. In this chapter, we will
present some of such concepts, and some of the nomenclature used in the remainder of
this capstone project report. More details about most of the concepts covered here can be
obtained in textbooks such as Voet et al., 2008.

2.1 The Genome

The genome of a organism is the entirety of its genetic code. For the trypanosomatids
covered here, the genome is composed of many chromosomes, which in turn are made of
DNA (abbreviation of deoxyribonucleic acid). A DNA strand is composed of a sequence
of nucleotides, which are what e�ectively encodes the actual data of the genome. These
nucleotides may be A (adenine), C (cytosine), T (thymine) and G (guanine). All nucleotides
are chemical components, with a common sugar ring called pentose and four di�erent
nitrogenous bases. Nucleotides are typically found in strand pairs, coiled as shown in
Figure 2.1.

The nucleotides are only capable of correctly associating in one of the following pairs:
Adenine and Thymine or Guanine and Cytosine, allowing us to describe the strand pair
using only one of the strands. In this regard, there is a convention for encoding a DNA
strand, which is from 3’ to 5’, which are carbon indices of a given pentose. 3’ and 5’ are the
start and end extremities of a DNA strand, respectively, determined by the carbon atoms
present on the pentose at each end of the strand.

A chromosome is a pair of complementing DNA strands, usually coiled around pack-
aging proteins called histones, giving it the characteristic shape shown in Figure 2.2.
trypanosomatids usually have many chromosomes, that in conjunction constitutes the
genome of the organism. The set of all the chromosomes of the organism in question is
called genome. The genome of T. cruzi, its chromosomes can be seen in Figure 2.3.
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Figure 2.1: Pair of associated DNA strands. Left: molecular composition of the four nucleotides.

Right: an example of an DNA molecule. Figure extracted https://en.wikipedia.org/wiki/DNA_base_
flipping

Figure 2.2: A chromosome anatomy. The double-strand DNA is packed by histone proteins, and

then further packaged in a condensed form that gives the characteristic ’X’ shape.

2.2 Replication and Transcription
Replication and transcription are two fundamental genetic processes that we will be

simulating and analyzing here. We will now describe some basics of the workings of both
processes.

2.2.1 DNA replication
We call DNA replication (or simply replication) the process of taking a DNA strand

pair and cloning it. That is, starting with a double helix, we get two identical helices. On

https://en.wikipedia.org/wiki/DNA_base_flipping
https://en.wikipedia.org/wiki/DNA_base_flipping
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Figure 2.3: Trypanosoma cruzi chromosomes, colored by decoded ranges. The chromosome

sizes are shown on the left, along with the respective chromosome names.

replication, the original strand is divided into two individual strands, each of which is used
as a template for building its complementary strand, as seen in Figure 2.4. The machinery
for this process is named replisome, and this is how it will be referred from here on. It is
possible that errors may occur in replication, whose correction might not be perfect, thus
causing mutations. This will be explored with more detail in Section 2.2.3.

2.2.2 Transcription
The DNA hosts sequences for many reasons, but one of its most important roles is to

store the code for RNA sequences that perform essential functions in the cell. Transcription
is the process of making a mRNA (short for messenger RiboNucleic Acid) sequence from
a section of a double DNA strand. The RNAP (RNA polymerase - transcription machinery)
attaches at the start of the gene to be transcribed and detaches at the end. The mRNA is
then used for protein production at ribosomes (the cell translation machineries) or other
functions (e.g., for the assembly of the ribosomes themselves).

2.2.3 Collisions
There are many possible sources of mutations, such as radiation destroying part of

a DNA strand or replication machinery problems. But one of the most prevalent source
of replication errors is collisions with other cellular machinery. The collisions that may
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Figure 2.4: DNA replication process. On the right is the original dual helix, that is divided, and

each strand becomes a dual helix, presumably being an exact copy of the original.

Figure 2.5: Transcription process. As we can see, the RNA polymerase unwinds then rewinds the

helix, using one of the strands as a template for the mRNA transcription.

happen with replication and transcription machineries are:

• Replication-replication head-to-head collision: When replisomes approach from
opposing sides of the chromosome. This type of collision is not a problem because
replication machinery evolved in such a way that collisions of this type are handled
gracefully.

• Replication-transcription head-to-tail collision, also called a co-directional collision:
When a replisome approaches a RNAP from behind (replisomes are commonly faster
than RNAPs). Worrisome but still handled quite well. Usually the RNAP is bumped
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o� (Figure 2.6, left).

• Replication-transcription head-to-head collision, also called a head-on collision:
When a replisome and RNAP collide front to front. This can result in a fork collapse,
which interrupt DNA replication in that location and might increase the probability
of mutations (Figure 2.6, right).

Figure 2.6: Types of replication-transcription collisions. Figure extracted from Yea-Lih Lin,

2017.

2.3 Replication origins
Replication actually can only start in speci�c origin locations on the DNA. These are

called replication origins and come in three types:

• Constitutive origins: They are �red frequently and consistently in the start of the S
phase, and more easily detectable.

• Flexible origins: Must be �red during the S phase, but �rings occur randomly through-
out the process.

• Dormant origins: Origins that are not �red unless something goes wrong during the
replication.
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2.4 The Cell Cycle
The cell cycle is a sequence of states a cell goes through before �nally undergoing

mitosis (duplicating). For eukaryotic organisms, such as the ones we are studying, the
following are the four states it goes through:

1. G1 or Gap 1: The cell is active and growing, preparing required resources for eventual
genome duplication

2. S or Synthesis: The cell duplicates its genome so this is the phase where the repli-
somes attach to the chromosomes.

3. G2 or Gap 2: The cell is active and growing, now with two copies of the genome. It
prepares resources for eventual cell splitting.

4. M or Mitosis: The cell splits into two cells, each with a copy of the original genetic
material.

The S Phase is the most important for us, as it is when the actual genetic duplication
process occurs.

2.5 Evolution and Selective pressure
Selective pressure is a characteristic of the environment that has more probability of

letting some organisms reproduce than others according to its traits. On the other hand,
evolution is a process that happens when there are organisms with traits that reproduce
non-perfectly in an environment with selective pressure. The population in this type of
scenario slowly evolves, optimizing the traits for a phenotype with the best �tness in their
environment.



11
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Methodology

In this chapter, we will present the main methodological activities that were accom-
plished to tackle the objectives proposed in this capstone project. We start describing,
in Section 3.1, the optimization that was carried out in the C++ version of the ReDyMo
simulator. In the sequence, in Section 3.2, we present some further improvements in
that simulator that were performed through software patching. Next, in Section 3.3, we
introduce a new evolution simulator, which enables us to study evolutionary aspects of
genomic organization in T. cruzi. Finally, in Section 3.4, we describe the scripts that were
coded for analyses of results generated by all those simulators.

3.1 Simulator Optimization
The speed we can run simulations at is one of the limiting factors for quality of the �nal

results. Moreover, a large amount of data is generated by the ReDyMo simulator, which can
be further explored using data mining and machine learning methods. However, a critical
point in the ReDyMo computational performance is in the storage of such simulation data
into the hard disk; therefore, we needed to develop a solution for such bottleneck.

3.1.1 Semantic Data Compressor
One of the main things that can be improved for a higher speed when running the

simulations is in saving the data to the disk. Preliminary tests run for Trypanosoma cruzi

CL Brener Non-Esmeraldo-like on a HDD, saving uncompressed data, show that more than
75% of the time was spent writing raw data to the disk.

While the newest version of the simulator had implemented Facebook’s zstandard

compression, allowing the time to be closer to 40% of total run time, the data was also
rendered illegible to humans, and requires external libraries to decode. Fortunately, the
data format is very predictable, and by utilizing this fact, it is possible to do better. Using
this to our advantage, it is possible to write an algorithm that compresses the data more
e�ciently, while keeping it readable for humans and easy to parse. This section describes
the implementation of a compressor that uses the data semantics to its advantage.
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Properties of the compression algorithm

The compression algorithm we want should use the data semantics as a foothold and
have the following properties:

1. Must be e�cient: The algorithm should run in (n), allowing for no signi�cant
loss of speed while using it.

2. Must allow data streaming: We are dealing with a large amount of raw output
data. Together with the above item, it should allow data to be streamed in, not
requiring the full data to be loaded into working memory.

3. Must be easy to parse: The format must not be di�cult to decompress using any
available language, as it is a custom algorithm. There should be clear delimiters, and
a consistent formatting.

4. Should be readable by humans: The format should be readable by humans without
decompression. This allows people to know how the data is expected to look like
even while compressed

Raw data and compressed format

Now we will discuss about the format for the raw data that would have been written
to the disk, and the representation of the data in compressed format.

To clarify some terminology, we de�ne A streak as an arrangement of repeated num-
bers:

1 1 # Start of streak 1
2 1
3 1 # End of streak 1
4 2 # Start of streak 2
5 2
6 2
7 2 # End of streak 2
8 3 # Start of streak 3
9 3

10 3
11 3 # End of streak 3

Program 3.1: Streak example.

And a streak sequence is a range with several back to back streaks of same size, with
values being incremented or decremented by one for each streak:

1 2 # Start of negative sequence
2 2
3 2
4 2
5 1
6 1
7 1
8 1 # End of negative sequence
9 2 # Start of positive sequence

10 2
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11 2
12 3
13 3
14 3
15 4
16 4
17 4 # End of positive sequence
18 7 # Start of non-sequence streak
19 7
20 7 # End of non-sequence streak
21 5 # Start of negative sequence
22 5
23 5
24 4
25 4
26 4 # End of negative sequence

Program 3.2: Sequence example.

The uncompressed data saved to disk are mostly sequences of equally sized number
streaks, except on replication machinery collisions and the ends of chromosomes. It is not
uncommon for more than half of the data to be a single sequence of large streaks. (with
streak length > 50).

As rebuilding a sequence from start value, end value and streak length is trivial in
linear time and allows streaming, we can represent each sequence or lone streak in a
generic and easy to read format:

<sequence_start_value>[-<sequence_end_value>][x<streak_length>]

A compressed �le is to be comprised of lines in this format, with the sequence end value of
the previous line di�erent from the sequence start value of the current line. This restriction
avoids confusing number streaks where half of its de�nition is in one line and the other
half in in the next line. It also simpli�es compression and removes ambiguity, as seen in
the next section.

1 1275x23
2 1274-257x65
3 256
4 257-436x65
5 437x64

Program 3.3: Example of compressed �le.

Above is an example of a real compressed �le for chromosome TcChr1-S of the Try-

panosoma cruzi CL Brener Non-Esmeraldo-like, with 77958 lines in the original data.

Compressor Implementation Details

The �nal algorithm is pretty simple in structure. There are many possible sequence
break types. The last three number streaks are stored, in order to be able to �nd peaks and
valleys. A compressed line is printed when a break is detected, for a previous sequence or
single value:
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1 # Not seq value detection example
2 s - 1 # Before previous (1, 2)
3 s - 1
4 s - 2 # Previous (2, 2)
5 s - 2
6 n - 4 # Current (4, 2)
7 n - 4
8 n - 5
9 n - 5

10

11 # Change size detection example
12 s - 1 # Before previous (1, 2)
13 s - 1
14 s - 2 # Previous (2, 2)
15 s - 2
16 n - 3 # Current (3, 3)
17 n - 3
18 n - 3
19 n - 4
20 n - 4
21

22 # Peak detection example
23 s - 1
24 s - 2 # Before previous
25 s - 3 # Previous > Before Previous
26 n - 1 # Current < Previous
27 n - 0
28

29 # Valley detection example
30 s - 1
31 s - 2 # Before previous
32 s - 3 # Previous > Before Previous
33 n - 1 # Current < Previous
34 n - 0
35

36 # Single value detection example
37 n - 1
38 n - 2 # Before previous
39 s - 4 # Previous > Before Previous
40 n - 1 # Current < Previous
41 n - 0

Program 3.4: Example sequence breaks. s marks values included in the sequence that is currently

being processed.

Some details were changed from previous iterations of the algorithm, such as adding a
requirement for each compressed line to end in a di�erent value than the next line starts.
This helped removing ambiguity, such as:

1 # Ambiguous case example - raw
2 1
3 1
4 2
5 2
6 2
7 3
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8 3
9 4

10 4
11

12 # Possibility 1
13 1-2x2
14 2
15 3-4x2
16

17 # Possibility 2
18 1x2
19 2
20 2-4x2
21

22 # Possibility 3 - Now the only correct option
23 1x2
24 2x2
25 3-4x2

Program 3.5: Example of possible ambiguity before change.

It also helped simplifying the algorithm, as this fact made a technically correct, but
very ine�cient compression that required ugly workarounds to amend:

1 # Inefficient case example - raw
2 1
3 1
4 2
5 2
6 2
7 3
8 3
9 3

10 4
11 4
12 4
13 5
14 5
15 5
16

17 # Before
18 1-2x2
19 2-3
20 3-4x2
21 4-5
22 5x2
23

24 # Current - Now the correct option
25 1x2
26 2-5x3

Program 3.6: Example of a technically correct but ine�cient compression.
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Implementations

The compressor was implemented twice during this project. Once in the ReDyMo-
CPP source code (https://github.com/msreis/ReDyMo-CPP), and in a python mod-
ule, that may also be used as a command line script, available in the git repository
(https://github.com/seijihariki/redymo-tcruzi-analysis).

3.1.2 GPU Processing
Another way of optimizing the speed of the simulator is running simulations on

GPGPU. While the original code uses a separate thread for each simulated cell, the GPGPU
simulation was implemented in OpenCL and made so to take advantage of graphic pro-
cessor strengths. Although results may not be completely replicable by utilizing GPU
processing, simple simulations can run faster that usual, accelerating sampling runs.

Implementation Details

The genome is stored contiguously, for faster and easier result retrieval using OpenCL
array manipulation functions (Figure 3.1).

Figure 3.1: Data Arrays used in the simulation.

Each fork is an individual thread, and the thread with ID 0 is responsible for managing
fork. All threads are synchronized every 100 timesteps to avoid too large of a desynchro-
nization. All relevant data is uploaded to the VRAM in the beginning of the simulation
and retrieved in the end. In Figure 3.2, we provide the complete �owchat for GPGPU
simulation.

3.2 Simulator Patching

As all software, the simulator had some shortcomings; some of them are small (e.g., lack
of argument for output folder selection, which made scripting and automation di�cult),
whereas other are rather relevant (e.g., non-uniform probability for each base pair to be
selected, that could possibly a�ect results in a signi�cant way). In this section, we describe
in details the functional changes made to the simulator to deal with those issues.
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Figure 3.2: Flowchart for GPGPU simulation.

3.2.1 Migration to GNU getopt
A quite small, but relevant change is the migration to GNU getopt for command line

argument parsing. Not only it is more stable, it is also more readable than the previous
hands-on implementation. Many previously hard coded values have also been made into
parameters, making the simulator more �exible, as well as a help command and menu.
The added options are:

• -h/–help - Opens the help menu;

• -p/–probability - Sets an uniform probability for attaching replication machinery
instead of loading MFA-Seq data;

• -O/–output - Sets output folder path, previously hardcoded to ./output/;

• -t/–threads - Allows to con�gure a number of concurrent threads, for running in
di�erent machines without recompilation;

• -g/–gpu - Enables GPGPU processing mode;
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• -x/–seed - The seed to be used for the simulations. It will not guarantee consistent
results for GPU simulations;

• -C/–con�g - Simulation con�guration �le to use for simulation.

All the options now have short equivalents, and are parsed via a dedicated Con�gura-
tion class.

3.2.2 Use of Simulation Con�guration File
With the added options for simulation, the length of the simulation command is getting

way too long and unreadable. With the added possibility of simulating cell evolution,
many more options would be needed. Therefore, we can share simulation con�gurations
more easily and a growing number of parameters, a YAML con�guration �le reader was
implemented. The con�guration should be written in the following format:

1 simulation: basic
2 parameters:
3 cells: 50
4 organism: TcruziCLBrenerEsmeraldo−like
5 resources: 50
6 speed: 65
7 period: 100000
8 timeout: 100000
9 dormant: true

Program 3.7: Con�guration �le template - Basic Simulation.

1 simulation: evolution
2 parameters:
3 # Basic simulation data
4 cells: 10
5 organism: TcruziCLBrenerEsmeraldo-like
6 resources: 50
7 speed: 65
8 period: 1000
9 timeout: 100000

10 dormant: true
11

12 evolution: # Evolution simulator data
13 population: 50
14 generations: 50
15 survivors: 30 # 30 out of 50 individuals will survive for the next

generation
16 mutations: # Allowed mutation types and their parameters
17 probability_landscape:
18 add: 0.15 # 15% chance of adding a new source
19 del: 0.1 # 10% chance of deleting an existing source
20 change_mean:
21 prob: 0.05 # 5% chance of changing mean for each source
22 std: 2000 # Standard deviation for the change
23 change_std:
24 prob: 0.05 # 5% chance of changing standard variation for each

source
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25 std: 50 # Standard deviation for the change
26 max: 1000 # Maximum standard deviation may ever be
27 genes:
28 move:
29 prob: 0.02 # 2% chance of moving for each gene
30 std: 5000 # Standard deviation of the change
31 swap:
32 prob: 0.005 # 0.5% chance of swapping with another gene
33 fitness: # Fitness calculation for evolution
34 min_sphase: 3 # Optimizes for minimum s_phase duration with weight

3
35 match_mfaseq: 5 # Optimizes for minimum difference with the original

MFASEQ proabilities with weight 5
36 max_coll: # Optimizes for maximum collisions with gene with

weight 2
37 weight: 2
38 gene: TcCLB.511557.29 # Will maximize collisions for this gene

Program 3.8: Con�guration �le template - Evolution Simulation.

3.2.3 Fixing Chromosome Probabilities

During development and data analysis, we noticed that when running simulations
with uniform probability landscapes, random base probabilities were not uniform. This
resulted from the process of selecting a random base. First, a random chromosome was
selected, and then a random base in that chromosome was selected. That way, bases in
shorter chromosomes had a higher probability of being selected than bases in longer
chromosomes.

As an example, imagine we have three chromosomes named c1, c2, and c3, with lengths
of 1 base, 5 bases and 10 bases respectively. First, we choose a random chromosome,
thus we have the following probabilities (P(x) is the probability of a certain chromosome
being chosen, and Pb(x) is the probability of any speci�c base of that chromosome being
chosen):

P(x) = 0.33,

Pb(c1) =
1
1 ⋅ P(c1) = 0.33,

Pb(c2) =
1
5 ⋅ P(c2) = 0.066,

Pb(c3) =
1
10 ⋅ P(c3) = 0.033.

Therefore, the probability of any base in c3 being chosen is 10 times smaller than the base
in c1. As each base should have the same probability of being chosen, we need to adjust
P(x) probabilities to make all Pb(x) equal. This was done by using a weighted discrete
distribution, thus weighting the probability of each chromosome to its size.
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3.3 Evolution Simulator
Considering we have a simulator for the process of DNA replication, we can use it to

simulate a simplistic view of DNA structure evolution. Some of the parameters we can
try to mutate are gene locations and the MFA-Seq replication fork attachment probability
landscape. Working DNA sequences have some structural particularities that will be of
concern when simulating evolution. Still, we will have to use some assumptions about
the internal workings of DNA machinery that are not clear at the moment of the writing
of this capstone project report. Some changes were made to the main simulator code
for usage by the evolution simulator, and a separate memory management system was
implemented.

3.3.1 Evolution
There is a classic arti�cial evolution architecture, with a �xed population size and

�tness proportionate or roulette wheel selection, in which each being has a probability
to survive proportional to its �tness (Figure 3.3). The �tness is calculated by taking an
average of a number of simulations executed with that organism for certain functions
that may be executed on each simulated organism (Figure 3.4). In the following, we will
present the currently implemented functions in the evolution model simulator.

Figure 3.3: Description of the roulette wheel selection.

Implemented functions

The currently implemented functions are:

• min_sphase: Minimizing S-Phase duration;
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Figure 3.4: This is the format of the population simulated in each generation. Each cell has its own

genes and probability landscapes, and each cell is run for a number of simulations. The simulation

statistics are then averaged for �nal �tness calculation.

• max_coll: Maximizing collisions in a certain gene;

• min_coll: Minimizing collisions in a certain gene;

• max_coll_all: Maximizing collisions in genes;

• min_coll_all: Minimizing collisions in genes;

• match_mfaseq: Match the MFA-Seq probability Landscape.

If more than one method is speci�ed to be used in the con�guration, they are composed
by a weighted sum. Fitness for each function is normalized to the range from 0 to 1
before applying the weighted sum. Genomes, replication times and statistics for the entire
population are written to the disk every n generations, read from the con�guration �le.
Replication is handled in a way that the worst are killed via the roulette wheel, and the
newly created empty population slots are �lled with identical copies of the survivors. The
surviving ones to multiply are also chosen proportionally from their �tness.

3.3.2 Memory Manager
The memory manager was implemented in order to avoid memory allocations, as

they are quite slow. It mainly manages strand duplication time vector allocation, but it
is generic enough to support other vector data types. It functions by allocating a new
vector only if necessary, keeping previously used but now unused vectors allocated for
future use. This works fairly well due to consistent vector lengths for all simulations.
Also, it makes some vectors, such as the probability landscape vector (at least for common
simulations) global. Because these vectors are usually read-only, we can use the same array
for all instances without worry. That way, we consume less memory and don’t spend time
allocating memory we already have. It is a singleton so instances would not be passed
everywhere.

The Memory Manager’s functionality is pretty simple, but must be thread-safe. It
works by using categories and allocation ids. It is assumed that any memory allocation in a
category may be reused by another request in the same category. These are the operations
one can run for memory management:
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• vector<T> &getMemorySpace<T>(length) - Allocates a new CPP vector of type T and
size length;

• void freeMemorySpace(v) - Frees a previously allocated CPP vector.

The memory manager should thus be pretty easy to use. Some example usage of the
manager might be:

1 #include "memory_manager.hpp"
2

3 int main () {
4 // Allocation will ocurr during first call
5 auto vec = MemoryManager::getMemorySpace<int>(10);
6

7 // Do things with the vector
8

9 // Free used memory
10 MemoryManager::freeMemorySpace<int>(vec);
11

12 // Allocation should not be required in this call
13 auto vec2 = MemoryManager::getMemorySpace<int>(10);
14

15 // Do things with vector
16 // Obs. Data should not be used uninitialized
17

18 // Free used memory
19 MemoryManager::freeMemorySpace<int>(vec2);
20 }

Program 3.9: Memory manager usage example code.

The memory manager was removed after some tests that indicated a lower performance
when using it in comparison to simulations without it. More time is used during simulation
when using the memory manager, possibly because of cache related issues. The memory
manager will not be used for actual simulations while this problem is not resolved.

3.3.3 Gene Location Evolution
Genes are something we cannot actually alter too much. They have their own functions

in the organism, so we cannot resize, add or delete them on a whim. The only change we
can make without interfering massively on cell functions is moving genes, assuming we
are ignoring epigenetics on this simulator.

Gene moving can happen in two di�erent ways in this simulation: The gene is moved
in the empty space surrounding it, or its position can be swapped with another random
gene in the same chromosome (Figure 3.5).

These two methods of mutation can result in any combination of gene orders and
positions if applied repeatedly to a genome.

3.3.4 Probability Landscape Evolution
The probability landscape is de�ned by epigenetic characteristics, and other unknown

biochemical mechanisms. Considering that, we decided to settle on a simpli�ed representa-
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Figure 3.5: Methods used in the simulator for moving.

tion of the probability landscape that allows for easier mutation design and implementation.
Our approach was to represent the probability landscape as a set of points centered on a
base pair, with a bell curve that a�ects surrounding probabilities. All bell curve parameters
can mutate: center, � and � . New curves can be added and existing curves may stop existing.
From now on, these points will be referred to as "Probability Sources", or only "Sources",
for simplicity. Random amounts use a normal distribution for generated values. Some
mutations are run individually for each source, checking base mutation probability and
then choosing one of the possible source mutations. Possible source mutations are:

• Changes parameter � of the bell curve, which is also moving the source by a random
amount;

• Changes parameter � of the bell curve of the source by a random amount.

Figure 3.6: Original probability landscape. Green is normalized sum, red are original sources.

Some mutations are run externally to a speci�c source. These are run for each individual
chromosome. In this case there is a base probability for non-source changes. Possible non-
source mutations are:

• Creates a new source at a random location (uniform distribution) with a random �
and � ;
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Figure 3.7: Moving source on probability landscape. Green is normalized sum, red are original

sources.

Figure 3.8: Changing � on a source. Green is normalized sum, red are original sources.

• Deletes a random source from the chromosome.

For each base, probabilities of the bell curves are calculated as the normalized sum of
the curves.

3.4 Data Analysis
Many scripts were made for utility reasons, such as compression/decompression and

FASTA �le parsing. Others were made with the purpose of data analysis, processing data
and plotting it. Here we describe the usage and purposes of scripts developed external to
the ReDyMo-CPP code. The scripts were separated into two categories:

• Base Scripts, which are mostly standalone scripts, or with dependencies only to
utility scripts;

• Meta Scripts, which are processes that use one or more base scripts.

Utility Scripts

Some of these scripts were made speci�cally for importing into other scripts, and not to
be run from the terminal. They are mostly helper classes and functions that parse certain
�les or provide useful functions. These scripts include:
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Figure 3.9: Adding source to probability landscape. Green is normalized sum, red are original sources.

Blue is the new source.

Figure 3.10: Deleting source from probability landscape. Green is normalized sum, red are original

sources.

• compressor.py: Semantic Compressor algorithm implemented in Python 3. It pro-
vides a function to compress and decompress an input string stream according to the
compression algorithm described in this document. This �le is a executable script
that can actually be used from the command line;

• fasta.py: A module containing the FASTA class, a simple parser for the .fasta �les
acquired from TriTrypDB (Aslett et al., 2010). Not very powerful but enough for
the analyses done in this project;

• data_processing.py: A module containing useful data processing functions, such
as a moving average calculator, genome concatenation and a collision statistics
calculator;

• plotting.py: A module containing some of the more common plotting procedures
used by the other scripts. Plotting of gene regions and moving average are included
in this �le.
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Data Scripts

Some scripts were made for facilitating data analysis and plotting. These can be used
to compare and visualize data from simulations:

• load_genome.py: Loads FASTA �le information into the sqlite3 database used by
the simulator, making it easy for future analysis of other organisms;

• plot_mfaseq.py: Plots MFA-seq information for quick visualization;

• plot_results.py: Plots replication time information of a simulation for easy visual-
ization;

• compare_results.py: Plots replication time information of two simulations for
result comparison.

3.4.1 DGF-1 to Collision relationship Analysis
This analysis was done to test the hypothesis that the genome has evolved so to

maximize collisions (thus maximizing mutations) to the Dispersed gene family protein 1, or
DGF-1. The �rst hurdle was to �nd a way to detect speci�cally replication to transcription
machinery collisions, ignoring other types. We could modify the simulator so it logs
collision locations and types, but many classes would have to be reworked to allow for
this. We then noticed that it was actually possible to detect and separate the collisions
from the replication times of each base. This resulted in a quite simple external python
script that calculates collisions on a given protein. In Figure 3.11, we show the replication
times of a chromosome put on a chart.

Figure 3.11: Replication times for chromosome 41 after one simulation.
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Any collision between two instances of collision machinery results in the upside down
V-shapes we see in the chart. That is because both sides are replicated and both reach the
collision point at the same time. However, collisions between replication and transcription
machinery can be visualized on the graph as vertical lines, because on collision, replication
stopped. After that, another replication machinery replicates the other side of the collision.
This results in a jump of replication times, and in a vertical line in the graph.
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Chapter 4

Results and Discussion

In this chapter, we summarize the main results obtained so far with the simulators
and programs described previously. Firstly, in Section 4.1, we provide performance results
obtained with the GPGPU processing; we do the same in Section 4.2 for the implemented
data compressor. Next, in Section 4.3, we compare the T. brucei model original behaviour
with the one yielded by the correction of the origin �ring probability. Finally, in Section 4.5,
we provide some results for T. cruzi with the new evolution model simulator.

4.1 GPGPU Processing
With the addition of GPGPU processing, it was possible to achieve quite a speed

increase in execution times. Initial setup is a bit slower, for data upload to the graphics
card, but is overcome by the performance gains on the tested machine. The average time
saves due to the addition of GPGPU processing can be seen in Table 4.1

Run Type Average Simulation Time Average Simulation Time to Run Time Ratio
CPU parallel execution 1746.06 ms 71.71 %
GPU parallel execution 1354.23 ms 62.44 %

Table 4.1: Time for running the simulation itself for CPU and GPU

4.2 Replication Time Data Compression
The simulator was already quite optimized on the start of this work, and zstandard

compression had been recently implemented. But writing output to disk was still one of
the most time-consuming processes. For faster and more legible save �les, a compres-
sor algorithm and format was developed that takes into account the expected output
format.

Implementing the compressor has shown a sizeable improvement in execution
times:
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Compression Type Average Save Time Average Save Time to Run Time Ratio
no compression 13375.9 ms 83.47 %

zstandard 1637.4 ms 38.21 %
semantic 300.08 ms 10.18 %

Table 4.2: Time for writing output to disk for each compression type

As can be seen on the table, the new compression algorithm showed an increase of
more than 5 times in speed for saving simulation data, when compared to zstandard
compression.

Because semantic compression uses the shape of the data for its advantage, we can
see a smaller �le size too, even without considering improvements to �le readability and
ease of decompression for unorthodox languages that may not have implementations for
zstandard compression:

Compression Type Average Simulation Output Disk Size
no compression 153 Mb

zstandard 1.1 Mb
semantic 172 Kb

Table 4.3: Space in disk used to store one simulation for each compression type

The compression and decompression algorithms can also be easily implemented for
data streams, not requiring a large amount of RAM.

4.3 Homogeneous vs Non-Homogeneous base
attachment

It was found that the random base selection used was not taking into account the lengths
of the chromosomes, skewing the probabilities of the bases in di�erent chromosomes.
These probabilities may a�ect �nal simulated replication times, and lengthen replication
periods, as seen in Figure 4.1.

As we can see, we have a sloped graph caused by this method of choosing a random
base. As it contains all chromosomes concatenated, we can see that the bases in the �rst
chromosomes, that are smaller, have a higher probability of being chosen, an thus, are most
likely to be replicated �rst. As the chromosomes are sorted according to size in crescent
order, this causes a clear tendency on the �nal replication times.

It is interesting to note that though the values become heavily skewed, it still has a very
similar shape to the corrected one, with peaks and valleys almost perfectly synchronized.
This shows the simulator is quite robust against general errors and mistakes.
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Figure 4.1: Comparison of e�ect of homogeneous and non-homogeneous random base selection on

replication times

4.4 DGF-1 region collision analysis

This was an analysis done to verify if the genome has evolved in order to maximize
collisions in the Dispersed gene family protein 1, or DGF-1. By utilizing some tricks, we
were able to extract collision information from replication time �les.

Using the FASTA �les, we calculated total base pairs for DGF-1 and all other proteins.
We then counted collisions inside DGF-1 proteins and inside other proteins, and normalized
with the base pair count, resulting in the number of collisions per base pair.

Doing that, we got the following results:

1 Loading annotations:
2 Detecting collisions:
3 Calculating statistics:
4

5 Collisions:
6 TcChr1-S: Base Pairs: 10394/32965 DGF/OTHER=0.19220571137084275
7 114385
8 TcChr2-S: Base Pairs: 5057/79527 DGF/OTHER=0.8783366569780795
9 168344

10 TcChr3-S: Base Pairs: 0/86326 DGF/OTHER=0.0
11 169572
12 TcChr4-S: Base Pairs: 0/84860 DGF/OTHER=0.0
13 131173
14 TcChr5-S: Base Pairs: 0/82812 DGF/OTHER=0.0
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15 178372
16 TcChr6-S: Base Pairs: 3106/232448 DGF/OTHER=1.0018333725107529
17 255568
18 TcChr7-S: Base Pairs: 10382/221742 DGF/OTHER=1.1750927900363413
19 258874
20 TcChr8-S: Base Pairs: 16683/197729 DGF/OTHER=0.7459664872563952
21 339370
22 TcChr9-S: Base Pairs: 10388/253697 DGF/OTHER=0.3748779393648382
23 287805
24 TcChr10-S: Base Pairs: 0/248717 DGF/OTHER=0.0
25 325312
26 TcChr11-S: Base Pairs: 16707/285897 DGF/OTHER=0.8433824127677805
27 366511
28 TcChr12-S: Base Pairs: 23068/256581 DGF/OTHER=0.8520016834131366
29 356770
30 TcChr13-S: Base Pairs: 10397/263678 DGF/OTHER=0.3291812047060305
31 362898
32 TcChr14-S: Base Pairs: 6762/334057 DGF/OTHER=0.537053093904176
33 375390
34 TcChr15-S: Base Pairs: 0/187488 DGF/OTHER=0.0
35 260277
36 TcChr16-S: Base Pairs: 43577/307780 DGF/OTHER=0.5756802524826716
37 420342
38 TcChr17-S: Base Pairs: 33406/306694 DGF/OTHER=0.3480234756974697
39 288830
40 TcChr18-S: Base Pairs: 21548/271302 DGF/OTHER=0.19805576925430846
41 531225
42 TcChr19-S: Base Pairs: 75148/307653 DGF/OTHER=0.5268883040839344
43 403897
44 TcChr20-S: Base Pairs: 13149/330604 DGF/OTHER=0.8472598659306112
45 453630
46 TcChr21-S: Base Pairs: 23358/339526 DGF/OTHER=0.642520056161434
47 417348
48 TcChr22-S: Base Pairs: 20962/308365 DGF/OTHER=0.3130578175229854
49 354600
50 TcChr23-S: Base Pairs: 36751/310437 DGF/OTHER=0.978506591578264
51 472478
52 TcChr24-S: Base Pairs: 61398/239911 DGF/OTHER=0.2503036364444952
53 372035
54 TcChr25-S: Base Pairs: 55488/322621 DGF/OTHER=0.4555899373850986
55 413301
56 TcChr26-S: Base Pairs: 43575/416927 DGF/OTHER=0.9562461598024145
57 496880
58 TcChr27-S: Base Pairs: 1238/471911 DGF/OTHER=0.2800177008052627
59 344662
60 TcChr28-S: Base Pairs: 92650/253791 DGF/OTHER=0.5306623933926979
61 540377
62 TcChr29-S: Base Pairs: 0/296854 DGF/OTHER=0.0
63 353759
64 TcChr30-S: Base Pairs: 24117/392050 DGF/OTHER=0.5665732815768618
65 539713
66 TcChr31-S: Base Pairs: 40662/392555 DGF/OTHER=0.6527786687471524
67 477735
68 TcChr32-S: Base Pairs: 3794/502101 DGF/OTHER=0.9342083237235888
69 429552
70 TcChr33-S: Base Pairs: 13567/431842 DGF/OTHER=0.3568292273174148
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71 400773
72 TcChr34-S: Base Pairs: 20884/462045 DGF/OTHER=0.8236002741699766
73 394484
74 TcChr35-S: Base Pairs: 26975/558125 DGF/OTHER=0.46591946722892663
75 504753
76 TcChr36-S: Base Pairs: 1556/595399 DGF/OTHER=0.31570595876113894
77 596814
78 TcChr37-S: Base Pairs: 10376/672607 DGF/OTHER=0.8542102611083814
79 642928
80 TcChr38-S: Base Pairs: 17505/383670 DGF/OTHER=0.5082010478614741
81 488189
82 TcChr39-S: Base Pairs: 10454/1034455 DGF/OTHER=1.7093911834066873
83 901809
84 TcChr40-S: Base Pairs: 112305/864465 DGF/OTHER=0.7438664733868388
85 1232782
86 TcChr41-S: Base Pairs: 65815/970657 DGF/OTHER=0.5656396109474302
87 1951655
88 GLOBAL: DGF/OTHER=0.6545174524139905

Program 4.1: Average after 10000 simulations with a period of 100 normalized by base pairs

We can see that at least globally, there is actually a lower collision rate by base pairs
for both DGF-1 and other proteins. Interestingly, when compared to other proteins, DGF-1
proteins were found to be about half as likely to incur transcription to replication collisions
by base pair density.

1 Loading annotations:
2 Detecting collisions:
3 Calculating statistics:
4

5 Collisions:
6 TcChr1-S: Gene Counts: 1/23 DGF/OTHER=1.393874769353448
7 114385
8 TcChr2-S: Gene Counts: 1/63 DGF/OTHER=3.518681125696975
9 168344

10 TcChr3-S: Gene Counts: 0/56 DGF/OTHER=0.0
11 169572
12 TcChr4-S: Gene Counts: 0/55 DGF/OTHER=0.0
13 131173
14 TcChr5-S: Gene Counts: 0/57 DGF/OTHER=0.0
15 178372
16 TcChr6-S: Gene Counts: 2/139 DGF/OTHER=0.9303705113564269
17 255568
18 TcChr7-S: Gene Counts: 1/129 DGF/OTHER=7.097328975360063
19 258874
20 TcChr8-S: Gene Counts: 3/133 DGF/OTHER=2.7903166027197033
21 339370
22 TcChr9-S: Gene Counts: 1/166 DGF/OTHER=2.5480889315373925
23 287805
24 TcChr10-S: Gene Counts: 0/184 DGF/OTHER=0.0
25 325312
26 TcChr11-S: Gene Counts: 3/183 DGF/OTHER=3.006375681370528
27 366511
28 TcChr12-S: Gene Counts: 5/153 DGF/OTHER=2.3439445239086747
29 356770
30 TcChr13-S: Gene Counts: 1/169 DGF/OTHER=2.1935921484558185
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31 362898
32 TcChr14-S: Gene Counts: 3/203 DGF/OTHER=0.7356082577314128
33 375390
34 TcChr15-S: Gene Counts: 0/129 DGF/OTHER=0.0
35 260277
36 TcChr16-S: Gene Counts: 10/218 DGF/OTHER=1.7768663340734776
37 420342
38 TcChr17-S: Gene Counts: 5/176 DGF/OTHER=1.3343519679748168
39 288830
40 TcChr18-S: Gene Counts: 4/246 DGF/OTHER=0.9674233935885032
41 531225
42 TcChr19-S: Gene Counts: 14/169 DGF/OTHER=1.553579562625429
43 403897
44 TcChr20-S: Gene Counts: 3/279 DGF/OTHER=3.133893291890931
45 453630
46 TcChr21-S: Gene Counts: 3/203 DGF/OTHER=2.991052864659566
47 417348
48 TcChr22-S: Gene Counts: 2/209 DGF/OTHER=2.223865315326991
49 354600
50 TcChr23-S: Gene Counts: 8/210 DGF/OTHER=3.040806229158204
51 472478
52 TcChr24-S: Gene Counts: 12/176 DGF/OTHER=0.9395126769210822
53 372035
54 TcChr25-S: Gene Counts: 9/182 DGF/OTHER=1.5845627425588236
55 413301
56 TcChr26-S: Gene Counts: 9/283 DGF/OTHER=3.142613741598097
57 496880
58 TcChr27-S: Gene Counts: 1/295 DGF/OTHER=0.2167045576625466
59 344662
60 TcChr28-S: Gene Counts: 20/171 DGF/OTHER=1.656355800221348
61 540377
62 TcChr29-S: Gene Counts: 0/209 DGF/OTHER=0.0
63 353759
64 TcChr30-S: Gene Counts: 3/296 DGF/OTHER=3.438811510614799
65 539713
66 TcChr31-S: Gene Counts: 6/262 DGF/OTHER=2.952597297148314
67 477735
68 TcChr32-S: Gene Counts: 1/375 DGF/OTHER=2.647166391976387
69 429552
70 TcChr33-S: Gene Counts: 2/313 DGF/OTHER=1.754420558625388
71 400773
72 TcChr34-S: Gene Counts: 2/315 DGF/OTHER=5.863088508279739
73 394484
74 TcChr35-S: Gene Counts: 4/395 DGF/OTHER=2.223708919712258
75 504753
76 TcChr36-S: Gene Counts: 1/412 DGF/OTHER=0.33992373248010305
77 596814
78 TcChr37-S: Gene Counts: 1/470 DGF/OTHER=6.193429840237265
79 642928
80 TcChr38-S: Gene Counts: 3/294 DGF/OTHER=2.2723012369898097
81 488189
82 TcChr39-S: Gene Counts: 1/707 DGF/OTHER=12.213264598221084
83 901809
84 TcChr40-S: Gene Counts: 12/603 DGF/OTHER=4.856045294787959
85 1232782
86 TcChr41-S: Gene Counts: 17/854 DGF/OTHER=1.926672324203659
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87 1951655
88 GLOBAL: DGF/OTHER=2.5759572385170917
89 AVERAGE GENE LENGTH: DGF/OTHER=5650.586206896552/1435.7409484454938

Program 4.2: Average after 10000 simulations with a period of 100 normalized by gene count

But, when normalized using gene counts. we get a much greater collision rate in DGF-1
than other genes. This may be caused by DGF-1 genes being in average much longer than
other genes. From this data, we can conclude that DGF-1 genes each tend to have more
collisions than any other genes, but due to them being larger, each base pair in any DGF-1
gene has a smaller chance of incurring in a collision if a collision does occur in a DGF-1
gene.

4.5 Evolution simulator
Simulations were ultimately not run on a particularly large number of cells or genera-

tions (3 instances, 10 cells at most for 100 generations) because of the large RAM capacity
requirements for running them. 10 cells reached almost 15 GB of RAM usage, making it
impractical for simulations on lower end hardware. This could de�netely be a point of
improvement in the future.

Because of low simulation count and population size, data acquired from evolution
simulations was not reliable nor demonstrated clear tendencies. Some tendencies were seen
though like of concentration of higher probabilities on areas with higher concentrations
of DGF-1 when optimized for a higher collision rates on DGF-1. Other observed tendency
was a concentration of higher probabilities on areas with less genes and areas with longer
genes when optimized for lower replication times, as can be seen in Figure 4.2.

Figure 4.2: The orange line is the probability landscape before and after evolution has taken place,

optimizing for lower replication times after 100 generations, starting with the probability of the blue

line. Red sections are the locations of DGF-1 genes, and gray sections other genes.
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Chapter 5

Conclusion

5.1 Summary of the project and its contributions

In this project, we approached several concepts related to the Trypanosoma cruzi, as
well as some newer �ndings about the genomic structure of this organism, and its relations
to the DGF-1 gene family.

We used, adapted, and improved the C++ version of the ReDyMo simulator, ReDyMo-
CPP, for use on the genome of the Trypanosoma Cruzi. We simulated and analysed the
genomic structure of this organism and the in�uence it has in collision locations and
counts.

On the front for improvement of the simulator, we achieved a number of performance
increases and some betterments in architecture and simulator usage:

• A result compressing algorithm that creates readable and smaller �les that can be
used for fast collision locator;

• Added GPGPU processing capability for basic simulations;

• Added possibility of using a simulation con�guration �le and seed;

• A �x to the probabilities for choosing a random site for replication fork attachment;

• Expanded the simulator, adding the capability of cell evolution simulation;

• General improvements to the architecture to facilitate future simulator expansions.

For data analysis, DGF-1 collision rates and preliminary evolution simulations were
ran, that resulted in a few insights:

• DGF-1 genes have increased collision rates, if considering gene counts, but as DGF-1
genes are much longer than the other, they have lower collision rates by base pair;

• When evolution is optimized for a increase in DGF-1 collisions, probability of repli-
cation starting around DGF-1 genes is increased;
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• More interestingly, when evolution is optimized for a reduced replication time,
probability of replication starting at the beginning of long transcription areas and
center of areas with few constitutive transcription regions is increased.

5.2 Future and Current Endeavors
This project has not been completely �nished, and work will continue, mainly in the

direction of optimization and scaling of evolution simulations, as well as checkpoints and
centralization of genetic data in the sqlite3 database.

Future work may follow many paths, some of them may be as described below:

• A more rigorous statistical analysis of the results for DGF-1 collisions, and possibly
run the same analysis on other gene families and groups to check for outliers;

• Analysis of data from the evolution simulator with bigger populations, and imple-
mentation of more evolutionary pressure aspects;

• Use of the evolution simulator on the Trypanosoma brucei, for which this mode of
simulation didn’t exist.

5.3 Student overview for the project
This project allowed me to dive into topics of molecular biology and genetics that

I wouldn’t have experienced otherwise, also being my biggest academic contribution.
It teached me a lot about real-world application of multithreaded, GPGPU applications,
and memory optimization techniques. This project was an all-round important and great
experience.

For some self-re�ection, I may have focused too much on optimization of the architec-
ture and implementations, and a bit too little on data analysis and visualization. But am
quite satis�ed with the achieved results, and will continue working on this project for the
near future.



39

References

[Andrade et al. 2014] Daniela V. Andrade, Kenneth J. Gollob, and Walderez O. Du-
tra. “Acute Chagas Disease: New Global Challenges for an Old Neglected Disease”.
In: PLOS Neglected Tropical Diseases 8.7 (July 2014), pp. 1–10. doi: 10.1371/journal.
pntd.0003010. url: https://doi.org/10.1371/journal.pntd.0003010 (cit. on p. 1).

[Araujo et al. 2020] Christiane Bezerra de Araujo et al. “Replication origin location
might contribute to genetic variability in Trypanosoma cruzi”. In: BMC Genomics

21.1 (June 2020), p. 414. issn: 1471-2164. doi: 10.1186/s12864-020-06803-8. url:
https://doi.org/10.1186/s12864-020-06803-8 (cit. on p. 2).

[Aslett et al. 2010] Martin Aslett et al. “TriTrypDB: a functional genomic resource
for the Trypanosomatidae”. In: Nucleic Acids Research 38.suppl 1 (2010), pp. D457–
D462. doi: 10.1093/nar/gkp851 (cit. on p. 25).

[Calderano et al. 2015] Simone G. Calderano et al. “Single molecule analysis of Try-

panosoma brucei DNA replication dynamics”. In: Nucleic Acids Research (2015),
gku1389. doi: 10.1093/nar/gku1389 (cit. on p. 1).

[García-Muse and Aguilera 2016] Tatiana García-Muse and Andrés Aguilera.
“Transcription-replication con�icts: how they occur and how they are resolved”.
In: Nature Reviews Molecular Cell Biology 17.9 (2016), pp. 553–563. issn: 1471-0080.
doi: 10.1038/nrm.2016.88 (cit. on p. 1).

[Gindin et al. 2014] Yevgeniy Gindin, Manuel S Valenzuela, Mirit I Aladjem, Paul S
Meltzer, and Sven Bilke. “A chromatin structure-based model accurately predicts
DNA replication timing in human cells”. In: Molecular Systems Biology 10.3 (2014),
p. 722. doi: https://doi.org/10.1002/msb.134859. eprint: https://www.embopress.
org/doi/pdf/10.1002/msb.134859. url: https://www.embopress.org/doi/abs/10.
1002/msb.134859 (cit. on p. 1).

[Scholl BB 2018] da Silva Scholl BB. Multiscale models of cell cycle dynamics in try-

panosomatids. 2018. url: http : / / resumosrca . butantan . gov. br / Abstract2015 /
Details/1370?grid-page=109 (cit. on p. 2).

[G. R. C. Silva 2017] Gustavo Rodrigues Cayres Silva. Desenho e simulação de modelos

de computacionais da dinâmica de replicação de DNA em kinetoplastídeos. 2017.
url: https://linux.ime.usp.br/~gustavoc/tcc/proposta.html (cit. on p. 2).

https://doi.org/10.1371/journal.pntd.0003010
https://doi.org/10.1371/journal.pntd.0003010
https://doi.org/10.1371/journal.pntd.0003010
https://doi.org/10.1186/s12864-020-06803-8
https://doi.org/10.1186/s12864-020-06803-8
https://doi.org/10.1093/nar/gkp851
https://doi.org/10.1093/nar/gku1389
https://doi.org/10.1038/nrm.2016.88
https://doi.org/https://doi.org/10.1002/msb.134859
https://www.embopress.org/doi/pdf/10.1002/msb.134859
https://www.embopress.org/doi/pdf/10.1002/msb.134859
https://www.embopress.org/doi/abs/10.1002/msb.134859
https://www.embopress.org/doi/abs/10.1002/msb.134859
http://resumosrca.butantan.gov.br/Abstract2015/Details/1370?grid-page=109
http://resumosrca.butantan.gov.br/Abstract2015/Details/1370?grid-page=109
https://linux.ime.usp.br/~gustavoc/tcc/proposta.html


40

REFERENCES

[M. d. Silva et al. 2019] M.S. da Silva et al. “Transcription activity contributes to the
�ring of non-constitutive origins in African trypanosomes helping to maintain
robustness in S-phase duration”. In: Nature Scienti�c Reports 9.1 (2019), p. 18512.
issn: 2045-2322. doi: 10.1038/s41598-019-54366-w. url: https://doi.org/10.1038/
s41598-019-54366-w (cit. on pp. 1, 2).

[M. S. d. Silva et al. 2017] Marcelo S. da Silva, Paula Andrea Marin Muñoz, Hugo A.
Armelin, and Maria Carolina Elias. “Di�erences in the Detection of BrdU/EdU
Incorporation Assays Alter the Calculation for G1, S, and G2 Phases of the Cell
Cycle in Trypanosomatids”. In: Journal of Eukaryotic Microbiology (2017). doi:
10.1111/jeu.12408 (cit. on p. 1).

[Tiengwe et al. 2012] Calvin Tiengwe et al. “Genome-wide analysis reveals extensive
functional interaction between DNA replication initiation and transcription in
the genome of Trypanosoma brucei”. In: Cell Reports 2.1 (2012), pp. 185–197. doi:
10.1016/j.celrep.2012.06.007 (cit. on p. 1).

[Voet et al. 2008] Donald Voet, Judith G Voet, and Charlotte W Pratt. Principles of

biochemistry. Vol. 4. Wiley New York, 2008 (cit. on p. 5).

[Yea-Lih Lin 2017] Philippe Pasero Yea-Lih Lin. Transcription-Replication Con�icts:

Orientation Matters. 2017. url: https://doi.org/10.1016/j.cell.2017.07.040 (cit. on
p. 9).

https://doi.org/10.1038/s41598-019-54366-w
https://doi.org/10.1038/s41598-019-54366-w
https://doi.org/10.1038/s41598-019-54366-w
https://doi.org/10.1111/jeu.12408
https://doi.org/10.1016/j.celrep.2012.06.007
https://doi.org/10.1016/j.cell.2017.07.040

	Introduction
	Objectives
	Outline of this work

	Fundamental Concepts
	The Genome
	Replication and Transcription
	DNA replication
	Transcription
	Collisions

	Replication origins
	The Cell Cycle
	Evolution and Selective pressure

	Methodology
	Simulator Optimization
	Semantic Data Compressor
	GPU Processing

	Simulator Patching
	Migration to GNU getopt
	Use of Simulation Configuration File
	Fixing Chromosome Probabilities

	Evolution Simulator
	Evolution
	Memory Manager
	Gene Location Evolution
	Probability Landscape Evolution

	Data Analysis
	DGF-1 to Collision relationship Analysis


	Results and Discussion
	GPGPU Processing
	Replication Time Data Compression
	Homogeneous vs Non-Homogeneous base attachment
	DGF-1 region collision analysis
	Evolution simulator

	Conclusion
	Summary of the project and its contributions
	Future and Current Endeavors
	Student overview for the project

	References

