Universidade de Sao Paulo
Instituto de Matemaéatica e Estatistica

Bachalerado em Ciéncia da Computagao

Leonardo Araujo Benicio dos Santos

Consul: Rails web application
scalability and performance improvements with

distributed computation

Sao Paulo

Dezembro de 2020

Consul: Rails web application
scalability and performance improvements with
distributed computation

Final monograph of the course
MACO0499 — Trabalho de Formatura Supervisionado.

Supervisor: Prof. Dr. Alfredo Goldman vel Lejbman

[Cosupervisor: Vanessa Mi Tonini |

Sao Paulo
Dezembro de 2020

Resumo

Este projeto tem o objetivo de estudar como uma aplicacao em Ruby on Rails escala
com um nimero crescente de usuarios simultaneos acessando o servico. Mais especificamente,
vamos estudar o Consul e propor melhorias para diminuir o tempo de resposta e aumentar
o nimero de usuarios simultaneos atendidos.

Consul é um aplicativo de cédigo aberto sob a GPLv3 desenvolvido pela prefeitura de
Madrid. Seu objetivo é facilitar o processo de participacao do cidadao no processo legislativo,
debates e pesquisas. Mas quem é melhor para definir Consul do que ele mesmo? Segundo
o site da Consul, “Consul é a mais completa ferramenta de participacao cidada para um
governo aberto, transparente e democratico”. A parte incrivel desse software é a comunidade
ao seu redor, com mais de 35 paises, 135 instituigoes e 90 milhoes de cidadaos participando,
sem falar nas mais de 1000 estrelas no GitHub, 700 forks e 15.000 commits.

Além dos desafios técnicos, o que me levou a este projeto é o seu contexto sob o conceito
de cidades inteligentes. Seguindo a definicao, "uma cidade inteligente ¢ uma cidade que
incorpora tecnologias de informagao e comunicac¢ao (TIC) para melhorar a qualidade e o
desempenho dos servigos urbanos, como energia, transporte e servigos publicos, para reduzir
o consumo de recursos, o desperdicio e os custos gerais". O Consul entra em acao ajudando
os cidadaos a participarem mais do processo legislativo para ajudar as autoridades piiblicas
a concentrar seus esforcos onde esta o problema.

Para entender o comportamento do aplicativo, usaremos um software de simulagao de
teste de carga chamado Gatling para simular cargas de usuario de um tnico usuario para um
lote de usuarios simultdneos durante intervalos de tempo fixados. O Consul sera executado
em um cluster simulado do Kubernetes por meio do Minikube, onde o cluster simulado
variard CPU e RAM. A tltima incognita que simularemos é o numero de réplicas para cada
tamanho de cluster.

Por fim, discutiremos alguns insights sobre como melhorar a confiabilidade e escalabili-
dade de uma aplicacao Ruby on Rails, é claro, com foco em nosso cenario, que é o Consul.
Para isso, faremos uma anélise estatistica detalhada de como esse aplicativo lida com usuérios
simultaneos e como pequenas melhorias poderiam aumentar a disponibilidade do software.
Esperamos, também, convencer o leitor da importancia dos testes de carga e falar sobre as

vantagens que o Kubernetes nos traz.

Palavras-chave: testes de carga, consul, cidades inteligentes

Abstract

This project studies how a Ruby on Rails application reacts through an increasing number
of simultaneous users accessing the service. More specifically, we are going to study Consul,
and propose improvements to lower the response time and increase the number of supported
simultaneous users.

Consul is an Open Source application under GPLv3 developed by the Madrid city hall.
Its goal is to ease the process of citizen participation in the legislation process, debates,
and polls. But who is better to define Consul then itself? According to Consul’s website,
"Consul is the most complete citizen participation tool for open transparent and democratic
government". The amazing part of this software is the community around it, with over 35
countries, 135 institutions, and 90 million citizens participating, not to mention over 1000
stars on GitHub, 700 forks, and 15000 commits.

Aside from the technical challenges, what drove me towards this project is its context
under the concept of smart cities. Sticking with the definition, "A smart city is a city that
incorporates information and communication technologies (ICT) to enhance the quality and
performance of urban services such as energy, transportation, and utilities to reduce resource
consumption, wastage, and overall costs". Consul comes right into play helping citizens
participate more in the legislation process to help public authorities focus their effort where
the problem is.

To understand the application behavior we will use a load test simulation software called
Gatling to simulate user loads from a single user to a batch of simultaneous users during fixed
time intervals. Consul will be running on a Kubernetes simulated cluster through Minikube,
which will range CPU and RAM. The last unknown that we will be simulating is the number
of replicas for each cluster size.

Finally, we will discuss some insights on how to improve the reliability and scalability
of a Ruby on Rails application, of course, focusing on our scenario, which is the Consul.
To do so we will be going through a detailed statistical analysis of how this application
handles simultaneous users and how minor improvements could increase the availability of
the software. We hope, as well, to convince the reader of the importance of load tests and

talk about the advantages Kubernetes bring us.

Keywords: load test, consul, smart city.

il

Contents

1 Introduction

1.1 Motivation oL
1.2 Why should we care about load time?
1.3 How fast is fast enough?

2 Background

2.1 What is Consul?
2.2 Why use containers?
2.3 Containers software
2.4 What is Kubernetes

3 Methodology and Experiments

3.1 What do we hope to achieve? oo
3.2 Typesoftests
3.3 Example of workloads
3.4 Testsscripts oL
3.0 Parserscript

4 Load Test Software and tools

4.1 Technical features
4.2 User Experience e
4.3 Performance
4.4 Gatling

5 An analysis of Brazil’s population

5.1 Motivationo
5.2 Population analysis o
5.3 Sao Paulo’s Governo Aberto analysis

6 An analysis of Consul’s original code

6.1 Host machine and OS specification
6.2 Tests methodologyo
6.3 Get toknow thedata

N = =

13
13
14
14
16
17

19
19
20
21
22

25
25
25
26

vi CONTENTS

6.4 Exploratory analysis o
6.4.1 2 cores and 9000MB RAM L.
6.4.2 4 cores and 9000MB RAM
6.4.3 8 cores and 9000MB RAM
6.4.4 8 cores and 16000MB RAM
6.4.5 8 cores and 26000MB RAM L.
6.4.6 Testsanalysis

7 Proposed improvements
7.1 Strategy to decrease page load time
7.2 Tests methodology and enhancements proposal
7.3 Explanatory analysis - Simple caching
7.3.1 2 cores and 8000MB RAM
7.3.2 4 cores and 8000MB RAM
7.3.3 8cores and 80O00OMB RAM L.
7.3.4 8 cores and 16000MB RAM,
7.3.5 8 cores and 26000MB RAM
7.3.6 Test analysis
7.4 Explanatory analysis - Advanced caching
7.4.1 2 cores and 8000MB RAM
7.4.2 4 cores and 8000MB RAM,
7.4.3 8 cores and 8000MB RAM
7.4.4 8 cores and 16000MB RAM
7.4.5 8 cores and 26000MB RAM
7.4.6 Test analysiso

8 Conclusion
A Code used for this simulation

Bibliography

45
45
47
49
49
20
52
25
57
o8
65
65
66
67
68
69
70

73

77

79

Chapter 1

Introduction

1.1 Motivation

It is commonplace to say that society, in general, has been increasing in life speed. By
that, we mean the communication has been increasing in speed continuously. On the search
to be more productive or because people got used to things going fast. No one expects to
wait anymore. Bringing to this study context, people expect websites to load quickly. As we
are going to talk about, there are some studies around it. We will show, as well, that Google
still uses website load time to measure performance on their top ranking websites.

The reader might not be satisfied with just people expecting quicker page loads. Then,
we shall explain why load time is a great measurement tool to calculate an application
performance. On a web server, there is an enormous amount of variables we have to deal
with. For example, we have network packets in and out, memory, disk space, disk read /write
speeds, latency, process power. Using machine specifications like this is not a great idea
because someone else cant measure the data as well, so, for example, an search engine can’t
track which web application performs better to rank it better.

Page load time shows us a perfect combination of all those variables summarized on one
metric that matters the most for the final user. Also, eases the process for other machine
processes the data. If your web applications take too long to answer a request, you could
leave the other machine on the other endpoint waiting, wasting resources.

We will explore all those metrics and also talk about virtualization implications, benefits
and problems. Discuss and understand how each metric affects our page load time. We hope
to achieve a better understanding of how to deploy a Ruby on Rails application. Make better
use of available hardware to minimize costs and increase the number of answered users and
their respective response times.

1.2 Why should we care about load time?

This chapter will try to convince the reader about the importance of the website page
load’s time. Let’s start with the big picture to give us a scenario from where we are departing.
It has been a few years since the world web traffic has surpassed desktop access. Here we
have to split the problem into two parts; first, mobile connection across the globe is not as
good as it is in major cities; second, most mobile devices do not have a big processing power.
To put this under perspective, imagine an average mobile user, under those circumstances,
having to use your website. If he has to wait like 10 seconds each time he clicks on a link,
how long do you think this same user will last before he gets frustrated and abandon the

2 INTRODUCTION 1.3

task?

Continuing investigating the same scenario but from the perspective of companies. Now
imagine, let’s say, Google’s crawler working on indexing websites. Imagine that there is
some other website which loads in 100ms each page, by the time the bot has crawled 6
pages of yours, it will have crawled about 600 pages of that other website within the same
amount of time, and, consequently, budget spent, which will get a higher SEO! (Seach Engine
Optimization) score? not even our bots tolerate long page loads, jokes aside, from Google’s
crawler point of view, there is no sense of spending a lot of time crawling one website when
it can craw other sites.

But wait, there is more. If your web page loads faster, your device, in general, will
spend less time handling that request. With a small payload, it will have lower code to
process; consequently, the users and your CPU will have spent fewer resources processing
that request. Again, lowering your bills with hardware and, also, saving user’s hardware as
well, and making you more sustainable.

Until now, we only have talked about the technical benefits of lowering your page load
time. Now we need to talk about the psychological point of view. If you deliver your content
faster, numerous studies show that your website will feel more professional. Going back to
our imaginary exercise, a slow website gives the impression of an old computer, which links
with unmaintained and abandoned software.

Narrowing down to our case, Consul. Our users will be navigating through different
legislations processes, voting on polls. There is a huge amount of text to load on each topic
this user tries to interact with, maybe images, not to mention the comments and debates.
If our goal is to keep this user engaged, debating, things have to load fast; it must load
fast. You can’t keep track of a conversation or exploring the different process going on the
platform if each time you open a link, or do any ordinary action, it takes a considerable
amount of time.

1.3 How fast is fast enough?

We think there is enough motivation to prove that increasing page loads is an important
matter. But then comes another question, how fast is fast enough? And here, there is no
convention, but we can investigate and get a pretty good approximation. For example,
according to Google, they aim to page response time’s under 500ms. But, before we start
talking about metrics and goals, we need to define metrics.

Visitors won’t wait long for a page to load

How long will you wait for a website to load on your phone?

599 respondents Orertisec n.5%

Figure 1.1: Blue Corona’s survey on how long would a user would wait for a page load against
Google metrics according to his study (ref. Corona).

Thttps://developers.google.com /search /docs/beginner /seo-starter-guide

1.3 HOW FAST IS FAST ENOUGH? 3

Anyone who has done web development knows which is the document ready event, which
is when a web page is ready for the user. Still, we must clarify that, and to do so, we will
use Philip Walton’s article, "User-centric performance metrics" (ref. Walton). For example,
a web site that loads a few lines of javascript code and then starts firing Ajax calls to load
the web site may have a faster response time, but we won'’t study this case here when we
talk about page load time, we mean the time to load all page content. And here we did the
first separation of our target group; we are not interested in the perceived load speed, for
example, loading pieces of the page at each time, so the user could start interacting with
the page before it fully loads, which is a strategy to attenuate the user frustration using a
slow service.

Having set a target response time, we should aim to talk about our user’s scenario.
For this purpose, again, talking about Google’s ranks, the top ranking websites on Google
gets page loads time of under 3000ms according with Philip Walton which wrote the artcile
"User-centric performance metrics" (ref. Corona). But the reality is not as good as Google’s
top-ranking web sites. The Unbounce page speed report says that in 2019, the average web
site load time was about 15000ms and as we can see in figure 1.1, 2% of the Google’s
crawled web sites answers their requests under 3000ms, 13% got under 5000ms, which is the
recommended maximum response time over 3G.

Most marketers’ landing pages
don’t hit acceptable speeds

21 1n-20

fasr,
d B

:

|
Ly
G-

Figure 1.2: Landing page response time for top Marketers at Google according to Blue Corona
study (ref. Corona,).

Like everything else, there is always the other side, and the same report shows us that
different users behave differently, for example, "Android users are more patient than iOS
users. Of those who will wait 1-3 seconds for a page to load, 64% were i0OS users while only
36% were Android users. Of those who said they’d wait 11-13 seconds, only 36% were 10S
users versus 61% Android users." and they say as well that most of the users will, firstly,
blame the internet provider of their equipment before blaming your web site. Still, we can
sustain a platform based on a belief that someday will vanish.

1 second | 10 seconds | 20 seconds
Lostness .36 .59 .57
Frustration |2.6 2.6 1.6
Task Difficulty | 3.4 3.1 2.8

Figure 1.3: Lostness, Frustration, & Task Difficulty Means for Experiment 1 of Paula Selvidge
(ref. Selvidge) study.

We will be relying on a study by Paula Selvidge (ref. Selvidge) related to page load
response time. In her experiments, she tried batches of users. The first batch was subject to
response times of 1, 10, and 20 seconds. The second batch was submitted to 1, 30, and 60
seconds. The study’s goals were to measure the degree of "lostness", task success, frustration,

4 INTRODUCTION 1.3

Number of Participants | 1 second | 10 seconds | 20 seconds
Successful 27 34 30
Not Successful 13 6 10
Total 40 40 40

Figure 1.4: Task Success for Experiment 2 of Paula Selvidge (ref. Selvidge) study.

1 second | 30 seconds | 60 seconds
Lostness 51 .50 .58
Frustration |1.9 2.8 2.8
Task Difficulty| 2.3 3.0 2.8

Figure 1.5: Lostness, Frustration, & Task Difficulty Means for FExzperiment 1 of Paula Selvidge
(ref. Selvidge) study.

and task difficulty as a function of delay time. To measure lostness, she got the ratio of the
optimal number of nodes required to complete a task to the actual number of nodes visited
by the user during the same task. The value presented on Figures 1.5 and 1.6 ranges from 0
to 1.00, where the closer it gets to 1, the less loss the user felt during the task.

Her study concluded that longer delays produce bigger frustration and that not only
the frustration increases, but it increases faster than linearly. Another point that is worth
mentioning is that the success rate on doing such a task did not vary according to the delay
in response time, but, at the same time, users quit doing that task with a 60 seconds delay.
The lostness was not affected by the increase in response time as well, but, surprisingly, her
study says that the average user would tolerate a delay of about 20 seconds but no more
than 30 or 60 seconds.

To cover the average user expectation, we will rely on a study from Scott Barber (ref.
Barber) from PennState University, USA, that investigates how fast a website needs to be.
He classifies the website performance into 3 groups, user psychology, system considerations,
and usage considerations. We are interested in his conclusions about user expectations. As
we have defined earlier, his study is interested in end-to-end response time, which the user
perceives. What the study points out is that a "fast" web site is a page that loads under 3
seconds; a typical page would load in between 3 and 5 seconds, 5 to 8 seconds is considered
a slow web site, at 8 and 15 seconds, the user starts to get frustrated, and above 15 seconds
it is unacceptable.

We hope it is visible to the reader the importance (ref. Cruz) of page load time, and we
had success in motivating you, using different points of view, to show that this study is of
great importance. Also, by this point, we hope that it is also clear that we are aiming to
provide a sub-second response time, trying to achieve 0.5 seconds, and would not tolerate
a response time of over 3 seconds. So, our best-case scenario is handling 95% of our users
under 0.5 response time.

1.3

HOW FAST IS FAST ENOUGH?

1 second | 30 seconds | 60 seconds
Success 30 26 27
Not Successful | 12 14 15
Total 42 40* 42

Figure 1.6: Task Success for Experiment 2 of Paula Selvidge (ref. Selvidge) study.

5

Chapter 2

Background

2.1 What 1s Consul?

Who is better to explain what is Consul then Conul’s official page itself? Quoting from
their website, "Consul is the complete citizen participation tool for open, transparent and
democratic government". The development started on 2015 July 15th; more technically, it
is an open-source platform written in Ruby, based on Rails gem, which allows citizens to
collaborate in legislation discussion, polls, debates, participate in budgets vote. As of June
2020, it has been implemented in 35 countries and over 135 institutions, allowing more than
90 million citizens to participate in public life through debates, polls and others structures.
It has been actively developed at a GitHub repository, maintained by Madrid’s town hall
with over 100 contributors, 14000 commits, and 1000 stars on GitHub.

By default, the Consul team provides an Ansible script to deploy Consul to production
servers. It’s minimum system requirements for the production environment is a Ubuntu 16
OS with 32GB of RAM, a quad-core processor with 20GB of hard drive, and a Postgres
database. For a staging environment, it is recommended a Ubuntu 16 with 16GB of RAM
on a dual-core processor with 20GB of hard drive and a Postgres database. They also offer
a Docker image for use with Docker, but the image is not ready for production or staging
servers, as advised by their official documentation.

Simple plot of Consul directory structure:
/
| app
assets
controllers
helpers
mailers
models
views
| _bin
| config
| db
kdezg_seeds.rb
seeds.rb
| _doc
| 1ib
. _log

8 BACKGROUND 2.1

logs

public

scripts

| entrypont.sh .2 spec
tmp

vendor

.codeclimate.yml
.coveralls.yml

.erblint.yml

.eslintrc.yml

.gitignore

.hound.yml

.mdlrc

.rspec

.rubocop.yml

.rubyversion

.scsslint.yml

travis.yml

Capfile
CHANGELOG.md
CODE_OF_CONDUCT.md
CODE_OF_CONDUCTgS.md
config.ru
CONTRIBUTING.md
CONTRIBUTINGES.md
crowdin.yml
dashboard.yml
dockercompose.yml
Docker file

Gemfile

Gemfile.lock

Gem file_custom
knapstack_rspec_report.json
LICENSEAGPLv3.txt
Rakefile

README.md
README_FES.md

If we take a closer look at the project structure, it is easy to see a classic monolithic
Rails application. It relies on a simple Memcached! structure for local caching, but there
is no implementation of a dedicated structured solution. We are going to use a dedicaded
Redis? cluster, which will be required for one of the methods that we are going to focus
on to increase the application performance. All essential files for application functioning are
given an example file, such as the database connection, environment variables files, and mail
connection.

Like almost all Rails applications, it uses Rubocop gem to track code style and code

Thttps://www.memcached.org/about
Zhttps:/ /redis.io/documentation

2.2 WHY USE CONTAINERS? 9

linters. Their official repository on GitHub uses TravisCI to execute unit tests, which are
extensively applied. It is also given on the official repository the scripts for constructs, setup,
and seed the database for development purposes. The project itself as the product is heavily
focused on community input and discussion, having contributions worldwide raging for a
great spectrum of use cases. Not to mention its extensive documentation of all its features.
Still talking about the community around Consul, they provide a community forum based
on an open-source project as well, named Discuss, where everybody can interact and solve
the problem of their own related to Consul’s implementation development. As you can see
from the below plots extracted from GitHub insights, they are quite active.

200
150
100

50

October 2016 April July October 2017 April July October 2018 April July October 2019 April July October 2020 April

Figure 2.1: Commits frequency of past year, excluding merges commits.

100

50

0 -
06/23 07/14 08/04 08/25 09/15 10/06 10/27 1117 12/08 12/29 01/19 02/09 03/01 03/22 04/12 05/03 05;24 06/14

Figure 2.2: Contributions to master.

Consul is based on modulus, allowing third-party developers to attach pieces of code
to solve problems related to their needs. By default, it allows users to interact with the
application with a normal REST API and a GraphQL API. Still, only on read-only endpoints,
it also provides default support for OAuth protocol. Finally, it provides a modulo to connect
with the local town hall census without modifying the application code.

2.2 Why use containers?

Developing and deploying web application relies on different stages. Each of these stages
depends on multiple libraries, depending on other runtimes and specific versions of each
software. Configure all the dependencies and needed software to get the developer work
environment running can be really hard, and reproduce this environment across a team of
developers to make sure the development won’t run into problems of matching dependencies
versions and stack and even deploy this environment to testing, staging. The production
server could be an even worse problem.

10 BACKGROUND 2.3

Quoting Solomon Hykes, creator of Docker, “You are going to test using Python 2.7, and
then it is going to run on Python 3 in production, and something weird will happen. Or
you will rely on the behavior of a certain version of an SSL library, and another one will be
installed. You will run your tests on Debian, and production is on Red Hat, and all sorts
of weird things happen”. As the reader may already have discovered, developing software is
increasing in complexity year by year, each time increasing the abstraction level.

As a community, we started using virtualization to easily set and reproduce the envi-
ronment’s configuration on which our software relies. Containers came into play just as the
technology was getting attention and evolving, but that does not mean that virtualization
became useless; each scenario needs a unique solution. Containers easy the job to apply
those environments, assert that each piece of the software is the same across servers and de-
velopments laptops, making sure that the number of variables that could lead to a problem
are reduced to the maximum possible.

Of course, we will lose some performance to increase our reproducibility, stability, security,
and manage resource boundaries among applications. And talking about most of the web
applications, that is exactly what it needs. Running an application on a real machine will
always be faster than running over virtualization software such as KVM (Kernel-base Virtual
Machine) and even faster than on a container. It is not difficult to find people using a
container solution inside a virtualized system based on KVM. In further chapters of this text,
we will show that the performance decreasing factor is acceptable compared to virtualization
benefits.

Starting from the simpler of the benefits, scalability. Supposing, you are using a mono-
lithic application and want to increase your availability to handle more simultaneous connec-
tions. The obvious solution is increasing your server’s brute force vertically by increasing its
attributes such as disk, RAM, or CPU cores. The other option is to increase it horizontally,
add more servers to work in parallel to handle the increase in traffic. With this horizontal
scale, you have to manage how each server communicates with other services and handle the
requests. Here, the container orchestrator comes into play to do this job for you to increase
using the second method.

Following Solomon Hykes, creator of Docker, as we already mentioned before, we need
to make sure three different levels of reproducibility. First, we need that all member of the
software developing team is running the same run times and dependencies levels, so the same
code will behave the same way on different computers, like what we see in java, with the
JVM (Java Virtual Machine), which allows it to run independently of the computer since
it runs the JVM. Then, we need harmony between those developing environments and the
testing environment, the staging server, and production ones for the same examples given
before.

Talking about resource boundaries, we can see from the Figure 2.3 how software deploy-
ment evolves between the beginning of web applications and today. The production deploy
architecture used to be all applications on the same server, which competes with each other
for the resources. If a malfunction of one API, for example, used all the resources available
on our server, the entire server would be compromised. And, entire system virtualization
through Virtual machine services such as VMWare would increase the process’s overhead.

Security is even easier to justify. If your application is containerized and separated into
microservices and one of them is compromised, just this one will be compromised. If you are
running on a monolithic application and running directly on the server, gaining access to
part of your software could result in a whole server break down, compromising user security;,
and, even, data loss. The containers are isolated, sandboxed from the host OS (operating
system), virtualized CPU, memory storage, and network resources at an OS level.

24 CONTAINERS SOFTWARE 11

Containerized Applications

Virtual Machine | | Virtual Machine | | Virtual Machine

App A App B App C

Guest Guest Guest
Operating Operating Operating
System System System

Infrastructure

Host Operating System

\ J

Figure 2.3: Docker deploy architecture x Virtual Machine deploy architecture.

2.3 Containers software

We had quite a few solutions from the beginning of the virtualization, such as Linux
VServer, Solaris Containers, Open VZ, Process Containers, LinuX Containers, Warden Let
Me Contain That For You, and last but not least, our industry-standard as of 2020, Docker.
Most of the solutions mentioned and created before Docker, in 2013, were discontinued, and
docker exploded in popularity and community support. Kubernetes, as known as "k8s," (ref.
Mercl, and Pavlik) has over 2500 contributors, 65000 stars, and 24000 forks on GitHub, its
main repository.

Docker and Kubernetes became the standard; the community is enormous, the variety of
examples, people discussing them, and developing using one of those technologies are wide.
That is our primary goal, we need to rely on a technology that is largely supported and
well tested and capable of delivering what promises is; like Javascript, it always delivers
what promises are. New promising technologies are emerging as of 2020, and the industry
seems to be evolving again. Docker and Kubernetes are vastly supported by the community
and has already proven to be capable of handling enterprise-level jobs, which all those other
emerging software needs to prove yet.

As of 2014, Docker switched its virtualization library to one of its own, called "lib-
container" and quoting Hykes, again, from its release post on Docker blog, "First, we are
introducing an execution driver API which can be used to customize the execution envi-
ronment surrounding each container. This allows Docker to take advantage of the numer-
ous isolation tools available, each with their particular tradeoffs and install base: OpenVZ,
systemd-nspawn, libvirt-Ixc, libvirt-sandbox, gemu/kvm, BSD Jails, Solaris Zones, and even
good old chroot. This is in addition to LXC, which will continue to be available as a drive
of its own." The libcontainer is a pure Go Library that accesses the kernel’s container API’s
directly.

2.4 What is Kubernetes

From this point, we already understand where Docker comes to play at our development
stack and what its job is, but where Kubernetes (ref. Barua) go in this scenario? And who is
better to explain itself then Kubernetes? Quoting from Kubernetes documentation: "Kuber-

12 BACKGROUND

[N}

A

netes is a portable, extensible, open-source platform for managing containerized workloads
and services, that facilitates both declarative configuration and automation. It has a large,
rapidly growing ecosystem. Kubernetes services, support, and tools are widely available.".
From now we are one step further from understanding the big picture. Docker comes into
containerizing our application, and Kubernetes is a software to manage these containers.

App App

Virtual Machine

App App

Virtual Machine

App App App

Traditional Deployment Virtualized Deployment Container Deployment
Figure 2.4: Web application deployment evolution.

Kubernetes emerges in a scenario where the need to handle containers failovers, down-
times, scaling, load balancing, storage orchestration, automated rollouts?, bin packing*, self-
healing, secret and configuration management, and much more. In our study case, Kuber-
netes will load, balance all traffic, and distribute it across container replicas on different
physical servers, expose our DNS name, assuring a stable environment on each server. Fur-
thermore, storage orchestration is of the same importance for us since it will handle mount-
ing different storage providers to handle our application needs. Taking advantage of the
automated rollouts is essential to guarantee no downtimes during updates or rollbacks due
to malfunctions of compromised updates; if we can deploy containers at the desired rate,
checking their healthy at every step,, we can ensure that a broken container will not go into
production. And, of course, bin packing allows us to tell Kubernetes the desired amount of
CPU and RAM power each container will have at its disposal.

3https://kubernetes.io/docs/concepts /workloads/controllers /deployment /#creating-a-deployment
4https:/ /kubernetes.io/docs/concepts/scheduling-eviction /resource-bin-packing /

Chapter 3

Methodology and Experiments

3.1 What do we hope to achieve?

Our goal in this study is to identify scenarios where a Ruby on Rails application under-
performs and discoverer what is causing such performance, thus leading us to investigate
the software that gives some insights on building a better web application. Using the RAM
and CPU allocation over Minikube’s cluster, we can tackle our software’s raw computation
power at its disposal. Then we still need to understand how the replica set interferes with the
application performance. For Example, Is it better to have four replicas to handle 1000 users,
each one handling 250 users, or just 1 replica handling all? Does this make any difference at
all?

From the other side, there is the total amount of simultaneous users and the time that
those users will access our simulated cluster. Ranging these two variables, we can stress our
application to discoverer how our hardware answers an increase in load power. The principle
is simple: we start with small batches of users at small-time intervals, then we increase those
numbers until we notice our cluster deterioration, signaling that we are starting to throttle
the machine.

By simulating all those unknowns, we hope to understand how the Consul responds to
user loads. With that in mind, we will explore possibilities on how to increase performance,
allowing us to handle more users with the same hardware. But this analysis is not exclu-
sively about Consul itself. It is about how a ruby web application escalates under a cluster
environment and what the reader might be forgetting that we will analyze the replica set
and understand how these applications behave in a cluster environment.

Let us dive into some examples to elaborate on what we hope to achieve by collecting
these data. Imagine a scenario where 100 simultaneous users access the application for about
60 seconds with a simulated cluster size of 2 cores and 4096MB RAM. In that scenario, we
can handle 90% of the requests. Now let us further increase our cluster size to 8 cores and
26000MB RAM. What is the expected behavior for our application? If with small amounts
of computation power, we almost handled 100% of those 100 simultaneous users, with four
times process power and 4.5 times RAM power. The job will be easy. You might have
thought. But, as you may expect, the answer is not simple, and this is one of the scenarios
that we explore and analyze during this study.

We are trying to demonstrate here that we can automate those steps and incorporate
that test scope into our CI (Continuous Integration)! / CD? (Continuous Deploy) pipelines
like what is proposed by Niklas Sundbaum (ref. Sundbaum) in his article where he defends

Thttps://www.atlassian.com /continuous-delivery /continuous-integration
https://www.atlassian.com /continuous-delivery /continuous-deployment

13

14 METHODOLOGY AND EXPERIMENTS 3.3

that all software should incorporate those kinds of software to their pipelines.

" Acceptance User acceptance Load
Commit stage —Jm -] - | Release stage
g test stage test stage test stage 9

Figure 3.1: Pipeline from Niklas Sundbaum (ref. Sundbaum) research.

Further investigating his ideas, he proposes to investigate a way to deploy those tests,
implement it over CI so it shows a clear and simple result, like passed and not passed, so that
it can be automated into test pipes. And the proposed idea to evaluate load test performance
is Control Charts like the example from his research in the figure below. The basic idea is
to evaluate those chart regions to identify where the software performance deteriorates with
proposed changes on an given commit, for example.

Sample number

Figure 3.2: Example of Control Chart pipeline from Niklas Sundbaum (ref. Sundbaum) research.

3.2 Types of tests

According to S. Pradeepl, and Yogesh Kumar Sharma (ref. Pradeep, and Sharma) we
can distribute the testing we apply to software to evaluate its capabilities before its launch
across different test types. Those types are Load, Stress, Security, Smoke, Unit, Acceptance,
Graphical user interface, Gorilla, and Performance testing. We are going to focus on the first
two testing strategies.

The former, Load Test, which, again, accordingly to Pradeep and Yogesh is: "Evaluation
of behavior of software with access by the huge load of users concurrently. The capacity of
software is analyzed to handle the load of users" and, the latter, Stress test, "Analysis of
the robustness of the software. It identifies the specific points where the software modules
getting issues and evaluation under extreme conditions of system failure".

Looking for a different definition, we have the one from Andrei Proskurin (ref. Proskurin),
which stands for Load test as "The system under test is exposed to the target load to verify
that the performance targets are met under a production-like load." and Stress test as "The
load on the system under test is ramped up until the application or supporting infrastructure
breaks. The purpose of this test is to determine the capacity threshold for the system."

3.3 Example of workloads

Our goal here is to motivate the reader with a different projects and workloads imple-
mentation and understand how the test tools works on real-world scenarios and controlled

3.4 EXAMPLE OF WORKLOADS 15

environment scenarios, going from software CI/CD pipelines to enterprise level applications
witch requires to support a heavy load.

If we look at Andrei Proskurin (ref. Proskurin) research, his goal is to implement a loading
test suit on a business level application developed using the Java Spring framework, which
has industry-level standards. As his goals were to cover a large codebase, his main metrics
were easiness to learn and implement these tools across the code, and the time it would be
used to cover it all. His software stack was composed of Tomcat (application server), Oracle
(database).

Another good example is the study conduct by Solange Pazl and Jorge Bernardino (ref.
Pazl, and Bernardino) where their goal is to evaluate different software testing tools and
find what is the best one, but what is interesting is that to test the test tools, you actually
have to push the tools into their limits so we can get a pretty good idea on how the would
behave on heavy workloads on real environments.

A different perspective study is the Load Testing of Web Sites Daniel A. Menascé
(ref.Menascé) explains how a website is built and what affects its performance the most.
Also, he explains from a different point of view why implement load test, keep track of when
to use it and implement it over CI/CD is so important. He also explains how load tests mea-
sure performance and how this relation, betwen load tests and performance improvements,
stands.

Still following the idea of standardizing a load tests suite into CI/CD, we follow the study
from Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora (ref.
Zhen Ming Jiang, and Flora), Automatic Identification of Load Testing Problems, which
talks about implementing a test suite into an enterprise-level application (Dell DVD Store,
the JPetStore application), and uses Open Source software suites. Another interesting study
from the same author is the Automated Performance Analysis of Load Tests (ref. Jiang et al.).
But in this study, they try to narrow and solve common problems of an application under
load by running software that analyses the application logs searching for bottlenecks.

Distributed functional and load tests for web services by Ina Schieferdecker1, George Din,
and Dimitrios Apostolidis (ref. Ina Schieferdeckerl, and Apostolidis) also uses an enterprise-
level application as the subject of study to analyze and present a software testing tool and
also discuss the importance of load testing your software. Still, at this time, the difference
here is that the study analyses an older application with a heavy legacy code base and test
styles to evaluate how it has evolved during the period.

Finally, the paper published by Rijwan Khana and Mohd Amjad (ref. Khan, and Amjad)
tries to accomplish the same goal of this chapter, show the reader the importance of load
testing web applications how performance is important to the end-user. The main interesting
part of this study is that it uses real-world data from the production environment taken from
its peak usage to measure the measurement tools and argue why it is important to test with
real-world examples.

We are going to built a system for testing based on pieces from each research we men-
tioned earlier. We are going to use a combination of tools and scripts to develop a test
approach that is usable on a CI/CD environment but still can be reproducible on the de-
veloper machine. To understand the application’s throats we will use scripts in bash and
NodelJS to create various scenarios to load int our test application, that will simulate the
load. We will further discuss this topic on the next sections.

16 METHODOLOGY AND EXPERIMENTS 3.4

3.4 Tests scripts

We have already decided on the software we will test the Consul application, but we still
need some code. First, the test script simulator, a Scala script, which controls the actions
that Gatling® software will execute to simulate the load we are trying to test. We will not
spend too much time on the test script, as it was auto generated by the record script that
is part of the Gatling software with just simple page access. To get a starting point and
simulate simple user navigation, the only exception is that we switched the fixed number of
users and simulation duration to accept input from command line variables to automate the
test process easily.

Simple plot of Consul directory structure:
/
test.sh
testsgatling.sh
parse.esults.)s

Our start script prepares the environment and launch the main script, which will perform
the tests itself. At first, it is possible to see the launcher script prompts to get the sudo
password, and that is because Minikube’s tunneling daemon requires sudoers privileges. We
need a self-sustainable script that could run on the cloud for a long period without prompting
to ask sudoers password every couple of hours.

The main script is controlled by six main variables. The first one is TRIALS, which
controls how many times Gatling will repeat the same test; uamount controls the number
of simultaneous users each batch of tests will simulate. Similarly, tamount controls the user
access duration, for example, if tamount = 60 and uamount = 1000, Gatling will simulate
a batch of 1000 simultaneous users access the application during a period of 60 seconds.
The second group is ramount and camount, which controls the number of replicas of the
application’s containers and the cores witch Minikube will use to simulate a Kubernetes
cluster. For the least, the mamount controls how much memory will be available on our
Minikube’s simulated cluster.

First, we set the number of cores and memory we want Minikube to runs on, which will
be used by Minikube to emulate each node on the cluster; that is, each core on the server
will act as a node on our emulated cluster. We restart it to apply the new configurations.
The next step is to patch the Minikube cluster IP to the Kubernetes interface, which helps
the interaction between Minikube and Kubernetes simulate a load balancer service on the
cluster and connect the outside world, not only inside the cluster itself.

The next step is to switch from Docker single machine environment to Minikube’s en-
vironment, build Consul’s image, and apply our configuration file k8s — con fig.yml. Now
that we already have the environment configured, our tunnel to the external world setup, we
jump into our "main" loop. First, we need to replace the newly generated cluster external
IP address for this session with the Gatling scala script that we created before, which is
done with the auxiliary of the sed command we can see on. Finally, launch the Gatling test
application itself with our testing parameters and repeat it TRIALS times. But before our
script start Gatling itself, we need a little sleep time to allow Minikube to launch all the
replicas and the containers, as we are using a single machine simulating a cluster; on launch
time, we get a few CrashLoopBackO f f because all replicas on all cluster nodes are trying

3https://gatling.io/open-source/

3.9 PARSER SCRIPT 17

to run its migrations at the same time thus the machine can’t handle the job well, so we let
it sleeps for 30 minutes to allow all its containers to crash and restore itself until its health
reaches 100% during this time, which means all containers were able to run its migrations
and start Rails application successfully.

Our main execution flow is divided into two sections, one for testing the Kubernetes
auto-scale, as seen on, which we can tweak the settings for better performance and will be
discussed in further chapters. The other execution flow is with fixed replicas amount, as
shown in the figure, which increases exponentially until double the machine cores to avoid
throttle our machine on the tests.

Our main problem was Minikube constant crash during the trials. As we perform a series
of tests witch tweaks deferments states configuration for our application, for example, RAM,
CPU cores, replicas set, after a certain amount of time advanced on the test set, Minikube
stop responding, so at each interaction and after each trial we have to make sure Minikube
is still running, everything is working as expected.

3.5 Parser script

After all the tests, we got a lot of result summaries. It is time to use the other auxiliary
script, a NodeJS application, to parse all that result into a single CSV file of then summarized
and sanitized to easy the analysis. The script itself is a javascript app running on NodelJS
that opens all the folders on the tests directory and iterate through the files, extract the
relevant data from it, and compile on a single line on the spreadsheet. By the time the script
finishes its job, we will have a complete spreadsheet with all our test results summarized.
The next step will be to load this CSV file into a Jupyter Notebook to take a closer look at
the data generated.

The code is based on the main function, which transforms the raw data into structured
data and calls two other parse functions to handle each appropriate file format, a javascript
file containing statistics information and the index.html file.

Chapter 4

Load Test Software and tools

4.1 Technical features

Our main goal in this study is to analyze and increase cluster performance for handling
multiple users concurrently, We are going to focus on loading times and requests handled. It
is crucial that we know ahead of time how many users we can handle and the related amount
of physical server we need to deploy to handle big cities such as Sao Paulo. We will discuss
a couple of load testing software here and why We are using Gatling to do the job. We will
focus on three main characteristics of the software, developer experience, performance, and
maintainability.

We need software that is easy to use on the command line for single tests, scriptable; it
needs to be executed on CI (continuous Integration) pipeline, it must be open-source and
perform well. There are plenty of candidates to do the job, but We are going to focus on 5
candidates that demonstrate the good and bad qualities of each group of features. Our focus
candidates are JMeter, Gatling, Locust, Drill, k6s.

Project activity

2200
1 400
1300
14 14
12 13
10
7 500 7
300
200 200 2 2
%01 50 20 10
& ¢ F & ® & & & & N
& A S P E
Commits Releases

Figure 4.1: Commits and releases on main repositories from Ragnar Lonn study (ref. Lonn).

19

20 LOAD TEST SOFTWARE AND TOOLS 4.2

Starting with active development. The most important feature an open-source software
would have is to be actively developed and have an engaged contributing community, which is
also marked as a prominent soft load test tool by (ref. Pradeep, and Sharma) S. Pradeep and
Yogesh Kumar Sharma. If we rely on software, we can not afoot it to be poorly developed, to
analyze it we gonna check the commits and releases our these tools repositories. As you can
see from the chart below, most of the market software is not as active as the first quartile.
JMeter (ref. Doyle) witch is a giant of the industry, actively developed by Apache, a great
lead followed by k6s, and Gatling is our best bet to rely on until here. If we look at the other
candidates, we have Drill and Locust, but they do not look so actively maintained as the
other, which is pretty critical.

Our first candidate is JMeter, but besides, it is actively developed, and Apache behind
it is a good sign too; it is an old Java application. At the same time that Java is great and
reliable, it is an old application, and to start a new application and use such old technology
would not be the best choice; we could take advantages of the JVM (Java Virtual Machine)
using newer technologies, and we don’t too advanced tools to this study. On the other hand,
following adversaries seems to be pretty good for the job. Both of them are twice actively
developed as their following adversaries. K6s relies on AGPLv3, which is great, and Apache
2.0, which is the Gatling license. On the other hand, Locust goes with an MIT license, which
is not a good sign for our project, and he wants to keep it as open as possible. Shining at
the top, besides k6s, there is Drill, AGPLv3 as well (ref. Lonn).

Talking about coding, which one of them offers better possibilities using their environ-
ments? Suppose we start again from JMeter (ref. Loisel). In that case, it is, as mentioned
before, a Java application, and a big one, which here is a score down because it would require
more resources to run and test our ecosystem without taking advantage of its advanced ca-
pabilities. It is not scriptable, which is pretty bad as well. K6s here goes as our best options,
as written in Go, a pretty performance-efficient programming language and runtime and
scriptable in JavaScript, which is great too because it is such a versatile language. Last but
not least, we have Gatling, which is written in Scala and scriptable in scala as well, which is
a pretty downside of it since scala does not have a big community, but it relies on the JVM
as well, and it is not as big as JMeter, which makes it very efficient. Besides being written
in Rust, Drill is not scriptable, taking away too many possibilities of the table. Locust takes
another hit here; it is written in Python and scriptable in Python. Besides all the amazing
features python has, it is too slow and could throat our tests with bigger simultaneous user
simulations.

Looking for a different approach, we see that Fernando, Monserrate, and Julio (ref.
Fernando Maila-Mailal, and Ibarra-Fiallo) go for the JVM strengths and the golden stan-
dard for testing, the JMeter. We can think of Gatling and the evolution of JMeter in terms
of modern software with, smaller code base, but it still gets the advantages Java, and the
JVM bring to us. Still, we can see from their research table quoted here that Gatling got
the best score out of all the analyzed tools.

4.2 User Experience

Finally, developer experience, and how good and easy is it to use all that software? All
of our candidates got a command-line interface, they all have recording features to use on
the browser, dynamically generated HI'ML report pages, Locust and k6s here display an
outstanding feature which is exporting the generated reported as CSV and still got a pretty
web user interface for reading and accessing the data. Besides JMeter’s age, it gots a large
plugin ecosystem that allows it to handle all sorts of jobs and tweaks. There is not too much

4.3 PERFORMANCE 21

Software a |b c d |e Total
Cano WebTest [7] 1 1 1 I |0 4.00
CLIF [8] 1 |1 1 1 (312 |7.12
D-ITG [9] 1 1 1 1 |0 4.00
Fast Web Performance Test Tool [10] 1 1 1 1 1.56 |5.56
Funkload [11] 1 0 1 I |0 3.00
Gatling [12] 1 |1 1 1 (358 |7.58
Grinder — Java Load Testing Framework [13] 1 0.5 1 1 1.56 | 5.06
JMeter — Load and Performance tester [14] 1 [0 1 |1 |42 7.20
MStone [15] 1 0 0 (1 |0 2.00
Multi-Mechanize — web performance and load testing | 1 1 1 I |0 4.00
framework [16]

OpenSTA — Open Systems Testing Architecture [17] 1 1 I |0 4.00
Performance Co-Pilot [18] 1 1 1 1 1.56 |5.56
Pylot — Performance & Scalability Testing of Web I |0 0 (1 |0 2.00
Services [19]

SoapUI [20] 1 0.5 1 1 |0 3.50
TestMaker [21] 1 0.5 1 I |0 3.50
Tsung [22] 1 0.5 1 1 1.88 |5.38
Xceptance LoadTest [23] 1 1 1 1 0 4.00

Figure 4.2: Fernando, Monserrate, and Julio (ref. Fernando Maila-Mailal, and Ibarra-Fiallo) ta-
ble comparing the diversity of software testing tools.

to differentiate all of them.

4.3 Performance

Just before we start talking about the test results, a disclaimer first. The tests were
performed on a 4-core Celeron server running Ubuntu 18.04 with 8GB RAM as the load
generator machine. For the target server, it was a 4-core 4Ghz i7 iMac with 16G RAM with
hyperthreading.

If we take a look at the plot below, from Ragnar Lonn study on Open Source load test
tools (ref. Lonn) where he compare the memory usage and maximum RPS (requests per
second), it is easy to see that there is a lot of tools capable of generating more traffic then
JMeter, Gatling of Locust, and Drills takes a fatal hit here, showing the slowest performance
possible. But, we really don’t need that much request per second. If we could generate like 200
requests/second would be over our needs for this study, our best bet tools are on their scope
range. It is important to keep in mind that these numbers were generated tweaking some
performances for some utilities, like k6s, Artillery, and Locust. Still, since those tweakings
are available to the final user, it is ok to rely on them.

Talking about memory usage. As expected from a Java application, not to mention an
old Java application, they eat all the resources we have. JMeter here uses most resources,
followed by Gatling, as known as a modern version of JMeter. K6s here seems to be our
best bet, but we still have some concerns; K6s is written in Python, which has drawbacks

22 LOAD TEST SOFTWARE AND TOOLS 4.4

Memory usage per VU

500 MB

403
400 MB

&
2
¢ 300 MB
o
g 253 245
=
fal
& 200 MB 178
£ 153 162
< 126
100 MB 6532 7180 88
3644 33
aaas 6815 810 1025 zlsze \ I I
0 MB - - - -
& o & {\\\ & L & A QA S & O
R R Qz° S on? &,_)o Y (_Q\\% \/OO) < &ci‘ 3 é\\
& v
-
&
1vuU @ 5wU 10 VU 20 VU

Figure 4.3: Memory usage per Virtual User from Ragnar Lonn study (ref. Lonn).

related to CPU performance. Since our testing server used for our tests has a nice amount of
RAM, we are not so concerned about memory usage and more focused on CPU performance;
ranking our possibilities here would be Locust, Gatling k6s JMeter.

Looking both, the memory usage per VU (Virtual User) and memory usage per request
volumes show us the same results as before. Both Java application with better performance
seems to use more resources than the other candidates’ average. On the other hand, Gatling
seems to be very consistent with its memory consumption and much better than JMeter,
but both of them fail if compared to this study’s other tools.

4.4 Gatling

For this study, we will go with Gatling because of its active development, a company
running an enterprise solution behind it, and together with the community, its reliability
provided by JVM; besides its low score on performance tests, Gatling got a company behind
it, a big community helping the development which makes it easy to learn new technology,
if more people are using it, there are more people to help you out with something you do no
understand, as also mentioned in Comparative Analysis of Web Platform Assessment Tools
by Solange Pazl, and Jorge Bernardino (ref. Pazl, and Bernardino). It is developed above
the JVM; it is pretty easy to add the software to the CI pipeline across different computers
and architecture. We can rely on that our software will behave the same and predict the re-
sults. Basically, our best approach would be Gatling, thinking about its longevity, durability,
maintainability, learning curve, and performance.

JMeter, Locust, and k6s and good candidates, but JMeter is a pretty heavy software that
may throat our tests due to the server capabilities. We would not need such a big ecosystem
and plugins, not to mention its poor scriptable interface. K6s fails on a critical topic, it
got a tiny community, and there is not too much content about it, making it difficult to
learn and study already done user-cases. It is written in python, which for our purposes
of simulation concurrencies users access to some URLs could lead to CPU throating and
increased response times.

4.4 GATLING 23

Memory usage per request volume

800 MB
661
—~ 600 MB
s
E’ 478
g 402
> 400 MB
> 330
Q
£ 259 244
s
200 MB 154 162
114 112 g, 126 113
6 72
5 44 38
4224 8880 6723 2726 31 | 11 I
0 MB - - - u n -
X 2 o 2> o () A A o o
N o & & & S & & & 58 &
¥ é&o 4?9 &"\) N ‘?_@\\ V0“' \é‘e’ (}§
&
Q’b
¥
20k reqs @ 100k reqgs 300k reqs 1M reqgs

Figure 4.4: Memory usage per request from Ragnar Lonn study (ref. Lonn).

The main problem with locust is its development, which seems to be active and some
periods but dead at others; on their repository, it is possible to see periods eighteens months
of no updates, it is written in Python as well, and its license is MIT. Having said all of
that, from now on, our reports will be all done using Gatling, what we can see as a great
candidate marked as well by Andrei Proskurin (ref. Proskurin) on his research for testing
java software.

Chapter 5

An analysis of Brazil’s population

5.1 Motivation

For our study, we need to understand what kind our load our servers will have to handle.
How many users will be using the application? What s the peak usage? To deploy a highly
scalable web application is crucial to understand the expected load. For a simple example, if
we would have a base use case of 10 to100 simultaneous users, we would need one instance
of the Rails applications, but as the base users load increases, we would have to escalate the
replica set or the nodes set.

Since this data is not available from Brazil’s government, we will use population analysis
to estimate the traffic that our application would have to handle.

5.2 Population analysis

For our analysis, we will use IBGE’s (Instituto Brasileiro de Geografia e Estatistica)
demographic census from 2010. Brazilian capital’s mean population is 1649841.73 people.
But, there is something strange here. This number is too high; most of the city population
is below 1 million people.

17
o
10
0.8 -
0.6 - ©
0.4
0.2 -
0.0 - —

1

Figure 5.1: Box plot of Brazilian capitals mean population.

As we can higher in the boxplot, the expected population distribution gets 2 outliers;
let’s remove them and see what we get. Brazilian capital’s mean population (without the 2

25

26 AN ANALYSIS OF BRAZIL’S POPULATION 5.3

outliers) is about 1055080.67 people.

Now that we have a pretty clear understanding of the Brazilian population, it is needed
to understand a bit more about Sao Paulo and its platform for contribution, called Governo
Aberto.

We already know the largest cities in Brazil, which is our capitals, we are now focusing
on our biggest city, Sao Paulo. But we are not looking for the overall population or access
to the internet.

5.3 Sao Paulo’s Governo Aberto analysis

Let’s look to Governo Aberto’s historical access data to see the traffic they need to pro-
vide. It is crucial to keep in mind that this data is from historical access of the Governo
Aberto platform and reports, which does not mean it is the same traffic volume for the con-
tribution platform. Still, it is as close as we can estimate data for the contribution platform
on a state level.

- 2010
2011
- 2012
- 2013
2014
- 2015
2016

10000

2000

abril

2
=

mai
junho

ja
fevereiro
marc
agosto
setembro
it
novembro

menths

Figure 5.2: Historical access during the past few years.

30000 - 2017
- 2018
- 2019

25000 2020

20000

15000

10000

janeira
fevereirg
marge
abril
maio
junho
julho
agosto
setembr
outubro
novembro
‘dezembro

manths

Figure 5.3: Historical access during the past few years separated by months.

As shown above, the catalog receives 1500 users a month with a peak usage at around
30000 users during the year. The first chart pops to our eyes that the web portal' receives
as low as 12000 users a month at its peak capacity during the year.

thttps:/ /governoaberto.sp.gov.br

Chapter 6

An analysis of Consul’s original code

6.1 Host machine and OS specification

Linux debian 4.19.0-8-amd64

Device
Architecture
CPU op-mode(s)
Byte Order
Address sizes
CPUs

On-line CPUs
Thread per core
Core per socket
Sockets

NUME Nodes
Vendor ID
CPU Family
Model

Model name
Stepping

CPU MHz
CPU Max MHz
CPU Min MHz
BogoMIPS
Virtualization
L1d Cache

L1i Cache

L2 Cache

L3 Cache

Class

x86 64
32-bit, 64-bit
Little Endian
36 bits physical, 48 bits virtual
8

0-7

2

1

1

1
Genuinelntel
6

58

Intel(R) Xeon (R) CPU E3-1230 V2 @ 3.30GHz
9

3637.993
3700.0000
1600.0000
6585.38
VT-x

32k

32k

256k

8192k

27

28 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.3

fpu vime de pse tsc msr pae mce cx8 apic

sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse2

ss ht tm pbe syscall nx rdtscp lm constant tsc arch perfmon

pebs bts rep __good nopl xtopology nonstop tsc cpuid aperfmperf
Flags pni pclmulqdq dtes64 monitor ds_cpl vinx smx est tm2 ssse

cx16 xtpr pdem peid ssed 1 ssed 2 x2apic popent

tsc_deadline timer es vnmi xsave avx fl16c rdrand lahf Im

cpuid fault pti dtherm tpr shadow flexpriority ept

vpid fsgsbase smep erms xsaveopt ida arat pln pts

sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse2

ss ht tm pbe syscall nx rdtscp lm constant tsc arch perfmon

pebs bts rep good nopl xtopology nonstop tsc cpuid aperfmperf

pni pclmulqdq dtes64 monitor ds cpl vinx smx est tm2 ssse

cx16 xtpr pdem pcid ssed 1 ssed 2 x2apic popent

tsc_deadline timer es vnmi xsave avx f16c rdrand lahf Im

cpuid _fault pti dtherm tpr_shadow flexpriority ept

vpid fsgsbase smep erms xsaveopt ida arat pln pts

Device Class
Sytem Computer
bus Motherboard

memory 31GiB System memory

processor Intel(R) Xeon (R) CPU-1230 V2 @ 3.30GHz
bridge Xeon E3-1200 v2/Ivy Bridge DRAM Controller
bridge Xeon E3-1200 v2/3rd Gen Core processor

6.2 Tests methodology

As we can see from the above commands, I'm working on an 8 cores machine with 31GB
of RAM. I will use Minikube with default RAM (9GB) and then test it with 15GB and
25GB, leaving 6GB for the host OS.

For this study, and as we will use only one host machine with Minikube to simulate a
cluster, at any moment of this document, when I'm referring to cores or nodes, I'm talking
about the same thing. Each core on the host machine represents a node on a Kubernetes
cluster.

I'm going to start simulating a cluster with 2 nodes and increase it by a power of 2 until
it reaches 8 nodes. At the same time, we will test our cluster with 1, 2, 4, 8, 16 replicas of
our application; 1, 10, 100, 1000, and 2000 users connecting during 1 second, 10 seconds,
and 60 seconds.

6.3 Get to know the data

First of all, let’s get to know what kind of data we are talking about. Check how the
data is disposed of.

6.4 GET TO KNOW THE DATA 29

Data columns Data Type

id 4935 non-null int64
simulation duration 4935 non-null int64
number of simultaneos users 4935 non-null int64

delayed 4935 non-null int64
cores 4935 non-null int64
memory 4935 non-null int64
replicas 4935 non-null int64

4935 non-null int64
4935 non-null int64
4935 non-null int64

total requests
total requests ok
total requests fail

t_ 800 4935 non-null int64
t 800 1200 4935 non-null int64
t_ 1200 4935 non-null int64
failed 4935 non-null int64

4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64

minResponseTime total
minResponseTime ok
minResponseTime fail
maxResponseTime total
maxResponseTime ok
maxResponseTime fail
meanResponseTime total
meanResponseTime ok
meanResponseTime fail
standardDeviation total
standardDeviation ok
standardDeviation _fail
percentiles 50 total

percentiles 50 ok
percentiles 50 fail

percentiles 75 total

percentiles 75 ok
percentiles 75 fail

percentiles 95 total

percentiles 95 ok
percentiles 95 fail

percentiles 99 total

percentiles 99 ok
percentiles 99 fail

4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64
4935 non-null int64

Fine, we are going to focus our analysis on response time and failures. Our goal is to
understand how to increase the rails application performance to handle as much as possible

requests per Kubernetes pod.

30 AN ANALYSIS OF CONSUL’S ORIGINAL CODE

6.4 Exploratory analysis

6.4.1 2 cores and 9000MB RAM

2 cores: 10 users accessing during 1 seconds

10 A

(=)
[=2]

=
=

[=]
=

% total_requests ok

=]
ha

0.0 -
o 5 10 15 20 5

replicas

2 cores: 2000 users accessing during 1 seconds

0.35 A

0.30 4

=
b
o

% I_requests_ok
= =] =]
e = =]
= wn =]

L=
(=]
n

0.00 -
o 5 10 15 20 25

replicas

6.4

2 cores: 1000 users accessing during 1 seconds

%, 030

% total_requests

2 cores:

% total_requests ok

0.40
0.35 4

o
[
wn

2 2 o

= bk

(=T =
| |

1=
=)
o

0.00 -

5 10 15 20 25
replicas

100 users accessing during 1 seconds

0.8 1

0.6 1

0.4 4

=
b

00 -

5 10 15 20 25
replicas

2 cores: 1 users accessing during 1 seconds

10 4

=
(=]

=]
(=2}

=
=

% total requests ok

[=]
L8]

0 5 10
replicas

15

Figure 6.1: Percentage of successful requests 2 cores, 9000mb. Accessing for 1 second.

As expected, as we increase the number of simultaneous users accessing the application,
the number of answered requests decreases as low as 20%. But, let us take a look from
the other side, starting with simple math. We are talking about 2000 users accessing the
application for 1 second, which means we have 12000 users each minute and a total of
approximately 0.5 billion users accessing during the month. That is too much; let’s not
forget that we are using only 2 nodes on our cluster.

6.4 EXPLORATORY ANALYSIS 31

Let us see now how good was our response time, considering that if a request takes less
than 800ms to return, it is the best scenario; if it takes between 800ms and 1200ms, we
accept it as well, but if we got over 1200ms, we start to get worried.

15 Users 1
Users 10
30 Users 100
Users 1000
25 Users 2000

g 1

0.0 02 04 0.6 08 10
% Completed requests

Figure 6.2: Completed requests with 2 cores, 9000mb. Accessing for 1 second.

As we can see from the above plots, most of the requests, which are completed, keep
inside our margin for "good" response time (t < 800ms). Now forget for a moment the
number of replicas we are using on our cluster; let’s check out how a 2-machine cluster could
handle that amount of users accessing the application during 1 second.

As expected, we can check that we can handle not so many simultaneous user connections
without computer power. Between 1-100 users/second, we can see that most of the requests
were handled just fine by our cluster. We need to check out what happens if we split this
user load for 10 seconds and 60 seconds.

15 Users 1
Users 10
30 4 Users 100
Users 1000
25 1 Users 2000
n
U 20 4
o
LE]
e L
10 4
5 l i
0- T
0o 02

04 06 0a 14
% Completed requests

Figure 6.3: Completed requests with 4 cores, 8192mb RAM for 60 seconds.

We got a problem; we were testing with 2000 users accessing during one second, now we
just moved to 2000 users accessing during 60 seconds, but as we can check on the above
histograms that we only got a slight increase over the completed requests signaling us that
we are reaching top performance for 2 nodes cluster, let’s see what changes if we increase
our cluster size.

32 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.4

6.4.2 4 cores and 9000MB RAM

Users 1
40 A Users 10
Users 100
Users 1000
0 Users 2000

Request

20 A

10 1

s

T T
00 02 04 06 0a 10
% Completed requests

Figure 6.4: Completed requests with 4 cores, 8192mb RAM during 60 seconds.

What pop’s up to our eyes immediately? We got a bigger number of requests being
accepted at the same time. Our distribution got larger, and a larger amount of requests
were answered. As we will see, not all of them got good response times, but the number of
answered users increased significantly. Ok, let us check now the response times.

At this point, the user should have already understood what is happening and our goal.
As we increase the number of available resources (cluster nodes) dedicated to our application,
we get a slight performance increase, getting more users answered correctly. Their response
times get slowly better. Jumping into our machine performance, handling all those users if
we increase their time available.

Let us stop here for a moment. We are focusing on users during a 60 seconds access time.
But our numbers are still not ideal. Our goal is to handle as much as we can and reach
as close to 2000 users for 60 seconds. As we can see from the above chart, with 4 nodes,
8192MB total available RAM to the cluster for 60 seconds, we handle almost all requests at
a max of 100 simultaneous users. Let’s jump to 8 nodes.

6.4 EXPLORATORY ANALYSIS 33

6.4.3 8 cores and 9000MB RAM

Users 1.0
Users 10.0
Users 100.0
Users 1000.0
Users 2000.0

20 1

15 1

Request

0 : ; ; o 1
02 04 L s 14
% Completed reguests

Figure 6.5: Completed requests with 8 cores, 8192mb RAM for 60 seconds.

Now, we should take a special look at our data. At this point in our study, we are using
8 nodes for our cluster simulation, and as the reader might remember, that is the number
of cores that our server got. Consequently, we might expect that this is as good as we can
get with this server. So, let’s see how our cluster behaves with 8 nodes with 60 seconds.

Let us go step by step and take a closer look. First things, first. At 1 user, we handle
100% of the requests, but nothing new here; we are talking about just 1 user per minute.
Surprisingly, at 100 users/minute, we still handle almost 100% of the requests, not all of
them at our perfect timing response, but we are handling them. Considering the numbers,
100 users/minute are 144000 users/day, and approximately 4.3 million users a month if
we look to a city of a population of 1 million people, as much as everyone accessing our
application one time a week.

With our current setup, on a 2 nodes cluster with 8192MB RAM, we can handle 4.5 mil-
lion simultaneous users a month (100 each minute) witch mean we can handle the expected
population using our services three times a month, or 67% of then using it every week, but
let us see if we can get better results.

But, if we remove the outliers cities, Sao Paulo and Rio de Janeiro, we got a population
of 1 million inhabitants, which means we could handle all of them using our application once
a week. Looking at 1000 simultaneous users, we can handle 80% of the requests just fine; in
other words, 800 users wouldn’t notice any downtime on our serves, but 20% of them will
be angry.

Considering just 800 users simultaneously, accessing for 60 seconds, we are talking about
34.5 million users a month. Handling even the most populated city of Brazil, Sao Paulo,
using our service 3 times a month.

If we look at the access data of the Governo Aberto portal’s we see that if we handle
10 users a minute, we could handle almost 450.000 requests, which could serve just well the
peak request capacity of 30.000 users/month. Here, in our example, we are using Sdo Paulo’s
Open Government data, the most populated city.

As shown from the above plot, we managed to handle almost 80% of the requests of 1000
simultaneous users but around 50% of the 2000 users, getting even worse results, which shows
us that if we get an overload of our server with peak usage, we should increase the number
of nodes on the cluster. In contrast, we can see that it is quite simple for 100 simultaneous

34 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.4

users to handle the traffic. Now we are going to check what the response time for 1000 users
was?

s Users 1000.0 [Users 1000

e = M ow & 0 @ - @
I N A -

1000 1500 2000 2500 3000 3500 1500 2000 2500 3000 3500 4000
mean response time {ms) mean response time {ms)
7 [Users 2000.0

1500 2000 500 3000
mean response time {ms)

Figure 6.6: Mean response time with 2 cores, 8192mb RAM for 60 seconds.

- Users 2000 0 - Users 1000.0

LI N - N -

1200 1400 1600 1500 2000 2200 2400 2600 1000 1200 1400 1600 1800 2000 2200 2400
mean response time (ms) mean response time (ms)

7 - Users 100.0

1400 1600 1800 2000 2200 2400 2600 2800
mean response time (ms)

Figure 6.7: Mean response time with 4 cores, 8192mb RAM for 60 seconds.

6.4 EXPLORATORY ANALYSIS

14 Users 100.0 Users 2000 0

1000 1500 2000 2500 3000 3500 0 1200 1400 1600 1800 2000
mean response time (ms) mean response time (ms)

1z Users 10000

000 1200 1400 1600 1800 2000
mean response time {ms)

Figure 6.8: Mean response time with 8 cores, 8192mb RAM for 60 seconds.

35

As shown in the above examples, as we increase the simultaneous user access, the response
time deteriorates quickly. Still, it seems to have a relation between the response time, the
cluster process power, and the number of acting nodes. It is crucial to create an equilibrium

between those resources, which requires further investigation.

6.4.4 8 cores and 16000MB RAM

We are investigating the cluster performance focusing on process power only (amount
of cores of the cluster), but we were limited to 8291MB of RAM. What if we increase the
cluster memory? We will check out what happens when we increase the cluster memory to
16384MB and 25000MB. It is wise to remember that the server on which we perform these
tests only has 26624MB RAM, so we will leave 6000MB for the OS to handle our tests

without page faults, causing it to slow down its performance.

G Users 1.0
Users 10.0
g 4 Users 100.0
Users 1000.0
- Users 2000.0
T
]
(=]
al
[«
2 -
1 -
D T T T T T
0.2 0.4 06 0.8 10

% Completed reguests

Figure 6.9: Completed requests with 4 cores, 16384mb RAM for 60 seconds.

36 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.4

Users 1.0
a0 - Users 10.0
Users 100.0
Users 1000.0
30 4 Users 2000.0
i
LA
=
=3
e 20

10 1
D'j = . ' I
0z 04 06

0o 0.8 10

% Completed requests

Figure 6.10: Completed requests with 8 cores, 16384mb RAM for 60 seconds.

From the above plots, observing the curves of 1000 users and 2000 users accessing for
60 seconds, we can see that deploy more replicas is not the solution. That is the opposite;
as a developer handling the server, you must understand the sweet spot to get the best
performance out of your cluster. The last plot shows us that for 4 cores, our best approach
is to launch one replica per core/cluster node. If we were to look at the handled jobs,
we managed to handle just fine between 50% and 70% of our requests, depending on the
amount. Let us make ourselves conservatives and say that we can handle 500 simultaneous
users/minute, leading us to approximately 21.6 million simultaneous users/month.

As the reader may recall, we doubled our core dedicated to the cluster that all cores
available on our machine to simulate the cluster. However, we still keep the same amount of
memory available for double the processing power amount. This leads us to a small amount
of performance increase, around 10% for 2000 users. Still, nothing too much significantly
doubled the process resources, and half of the memory is available to each replica. Thus,
it is interesting to notice that we could maintain stability with more replicas; for example,
the peak performance was approximately 10 replicas. Let’s jump now to full cluster power,
26624MB of memory, and 8 cores. Finally, let us plot the mean response time and compare
the changes that increase memory at each step.

6.4.5 8 cores and 26000MB RAM

Ok, we were able to increase the performance a little bit, but no too much, and now we
are using approximately 3000MB memory for each node on our cluster, so what going wrong
here? Here we face another technical issue; we are using the same machine to simulate our
cluster and our test utility, which causes one tool to throttle the other; in other words, we
can’t guarantee the resources needed because if we give all machine resources to our cluster,
our test application won’t be able to simulate all those user sessions. And here is where
and cant advance furthermore on our investigation. In our best scenario, we could handle
around 700 to 1200 users simultaneously, if we took the mean, around 950 simultaneous
users, leading to approximately 41 million users/month. Let us look at the mean response
time; what can we say? Did it increase?

6.4 EXPLORATORY ANALYSIS 37

6 Users 1.0
Users 10.0

g 4 Users 100.0
Users 10000

4] Users 20000

3 -

T
500 1000 1500 2000 2500 3000 3500
mean response time {ms)

[=T=

Figure 6.11: Mean response time with 4 cores, 26624mb RAM for 60 seconds.

Users 1.0
30 Users 10.0
Users 100.0
75 Users 1000.0
Users 2000.0
20 1
]5 -
ln -
5 -
u |

0 500 1000 1500 2000 2500
mean response time {ms)

Figure 6.12: Mean response time with 8 cores, 26624mb RAM for 60 seconds.

6.4.6 Tests analysis

Now we have to split this task into 2 tasks; first, we are going to compare the results
between 16GB and 26GB of memory to see what changed, separately for 4 and 8 cores, then
we look at jumping from 4 to 8 cores at 26GB of memory.

Closing our analysis to 1000 and 2000 simultaneous users, for easy-of-understanding rea-
sons, most of the requests were handled between 1500ms and 2500ms. Doubling the available
memory allowed us to shift these charts slightly to the left, making it closer to 1000ms and
2000ms. Cheers, we are getting close to the optimum performance given the resources we
have. Now observe the 8 core, between 16GB and 26GB of memory, the first response, for
16Gb memory, we handle most of the request from around 1000ms to 1800ms with a quarter
of the requester being over 2000ms and as high as 3500ms, and again, increasing the memory
shift our chart a little to the left, making the handling request response time lower. And we
see a peak on 1500ms response time.

So, what do we see here? As we increase performance, we are going a little bit more
user-handed but increase our response quality, making it faster for the answered users.

38 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.4

Talking about the changes between 4 and 8 cores, we see that our curve changed from a
separate bar to more something that remembers a Normal distribution; in other words, we
are better handling the same amount of users, not quite the same amount as we have seen
before, like 10-20% more.

G e Users 1.0
Users 10.0
g 4 Users 100.0
B Users 1000.0
Users 2000.0
4
3 -
2 -
| ‘ ‘
ﬂ T T T
0 500 1000 1500 2000 2500 3000 3500

mean respense time (ms)

Figure 6.13: Completed requests time with 4 cores, 26624mb RAM for 60 seconds.

6 1 o Users 125.0
Users 150.0
5 Users 175.0
W Users 200.0
a- Users 225.0
B Users 250.0
Users 275.0
37 Users 300.0
Users 2500.0
21 Users 3000.0
Users 5000.0
1 <

1000 1500 2000 2500 3000
mean response time (ms)

Figure 6.14: Completed requests time with 4 cores, 26624mb RAM for 60 seconds.

The above histogram summarizes how our application scale to handle those simultaneous
users; at 2000 users, we can handle between 0.4 and 0.6 of the requests, and this performance
increases a little bit as we double the cores, from 4 to 8, shifting from 0.3-0.5 to 0.4-0.6. On
the other hand, if we compare with 16GB of memory, we had a wider range, going from 0.1
to 06; the difference here is how sparse those two distributions are on this interval.

The main problem here is that at 100 simultaneous users, we already dropped the per-
centage of handled requests. At 1 user, obviously, we handled 100%, but at 100 users, we
dropped to something between 80% and 90% of the requests, but why is it dropping so
fast? The cluster got 8 cores and 26000MB RAM for its disposal, our maximum hardware
capacity, but the performance shows signals of deterioration too fast for the number of simul-
taneous users. Another interesting part of these 2 plot is that the proportions keep almost

6.4 EXPLORATORY ANALYSIS 39

linear when doubling the cores from 4 to 8. If you look at the first and second plots, one
can notice that at 100 simultaneous users, we handle, on both 4 and 8 cores, around 80-90%
of the requests. We can conclude that the core is not throating the cluster performance, at
least for 100 simultaneous users. And here it comes, the big unknown, if we look at 4 cores
and 8 cores with around 16000MB RAM, around 10000MB less than these last plots, the
proportion keeps itself around 80-90% of the requests, so, let’s recapitulate what happened
here. We increased all available resources for our cluster; we doubled the core amount from
4 to 8 cores and increased the RAM amount from 16000MB to 26000MB, but the requested
handle keeps the same on all 4 scenarios, around 80-90%. What is causing this? Let us plot
a few histograms and see when we throttle 100 simultaneous users.

Users 1.0
Users 10.0
Users 100.0
20 Users 1000.0
Users 20000

25

Request

10

i} Al el

0o 02 04 06 08 10
¥ Completed reguests

Figure 6.15: Completed requests time with 8 cores, 4096mb RAM for 60 seconds.

Users 1.0
Users 10.0
Users 100.0
Users 1000.0
Users 2000.0

20

15

Reguest

0.2 0.4 0.6 0.8 1a
%% Completed requests

Figure 6.16: Completed requests time with 8 cores, 8192mb RAM for 60 seconds.

Ok, we need to make a stop here. We just plotted our cluster performance, handled
requests, kept the core amount constant at 8 cores, and started lowering the RAM amount.
At 4096MB RAM and 8 cores, we just dropped the percentage of handled requests with 100
simultaneous users, going from 80-90% to, on its worsts, 30%. We got a pretty big hit here,
but we need to investigate; furthermore, let us keep the RAM now at 8192MB, where we
know that it can handle 100 simultaneous users, and see how cores affect this response time.

40

AN ANALYSIS OF CONSUL’S ORIGINAL CODE

Users 1.0
Users 10.0
Users 100.0
Users 1000.0
Users 2000.0

0o 02 04 0.6 0.8 10
%% Completed requests

Figure 6.17: Completed requests time with 8 cores, 16384mb RAM for 60 seconds.

Users 1.0
50 1 Users 10.0
Users 100.0
40 - Users 1000.0
Users 2000.0
.
g
T
(=
20 1
10 -
oL : L : . .I [
0o 02 04 0.6 08 10

% Completed requests

Figure 6.18: Completed requests time with 8 cores, 26624mb RAM for 60 seconds.

6.4

That is interesting; if we run our cluster as low as only 2 cores, as a 2 node cluster

with 1 core each node, but with 8192MB RAM, the cluster keeps it static and handles
the same amount of users. We still need further investigations because we can increase the
cluster cores power from 2 to 8 and increase the memory from 8192MB to 26624MB, but
the handled requests keep constant around the same interval. What happens if we lower the
time interval? Until now, we kept our time interval constant at 60 seconds. The last 3 plots
show us that, surprisingly, the number of handled requests at 10 users kept constant around
that same interval, 80-90%. We need to plot the total number of requests to see if we are
hitting the maximum request- s/second that we can handle.

6.4 EXPLORATORY ANALYSIS 41

s Users 1000.0
14 4 Users 2000.0

3000 4000 5000 BOOD 000 8000
standard deviation ok

Figure 6.19: Standard Deviation with § cores, 8192mb RAM for 60 seconds.

e Users 1000.0
16 1 Users 2000.0

2000 3000 4000 5000 BOOD 000 BOO0
standard deviation ok

Figure 6.20: Standard Deviation with 8 cores, 16384/mb RAM for 60 seconds.

As expected, the number of requests / second is not the problem here; we are far from
its limits. So, what do we see here? The answer is simpler than the reader may expect. We
are just degrading our cluster. If we want to serve over 95% of the requests, it is essential
to increase our server. As we try to reach 100% requests, we need to increase the number of
servers available to the cluster. And here, we will call the Pareto Principle, which states that
"for many events, roughly 80% of the effects come from 20% of the causes". That is exactly
what we see here; with 20%, we can handle 80% of the requests. Still, as we are moving to a
better quality application, which tries to reaches 100% response tax, you will have to do the
other 80% of the effort, and that is why to handle these last few requests, we need so much
more servers. The closer we are to 100%, the bigger the number of nodes on the cluster.

To demonstrate what is happening here, we have to plot our user access for 60 seconds.
Still, for a more thin gradient, for example, with 1, 10, 25, 50, 75, and 100 simultaneous
users, so we can understand where our cluster drops from 100% request rate to 80-90% and
find how our cluster behaves and handles optimum simultaneous users. We will make another
stop on our analysis to take a closer look at what is happening here and its scenario. Still,
for simplicity, we will keep only the 60 seconds scenario.

42 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.4

Users 1000.0

200 1 Users 2000.0

17.5 1
15.0 1
125
1000
751
5.0 1

25 4

0o T T T T T T :
2000 3000 4000 5000 BDO0 7000 BOOOD
standard deviation ok

Figure 6.21: Standard Deviation with 4 cores, 26624mb RAM for 60 seconds.

4.0 A Users 1000.0

35 Users 2000.0

30 A
25 1
20 A
15 4
10 A

05 4

00

4000 5000 BO00D J000 8000
standard deviation ok

Figure 6.22: Standard Deviation with 4 cores, 26624mb RAM for 60 seconds.

The last 4 plot shows us the "softening" and "clustering" of our data point since we
give more resources to our cluster, it accommodates more requests, but these extra requests
come with a price. The mean response time increases over 1000ms, but what is causing this?
As we can observe from the last plot, double the core amount gives a significant increase
in requests responded successfully. Still, double the memory, or increase it by 50%, helps
accommodate more requests at a more uniform rate, instead of handling some requests fast
but others giving failure completely. To summarize, memory here plays an important spot
in increasing each user’s performance, allowing a uniform scenario across a bigger range of
users. The cores/cluster nodes act on handling those requests; as expected, it is responsible
for the processing power.

For example, by doubling the nodes handling requests, we got over 3 times the number of
successful requests. Increasing memory allows the number of successful requests to increase
by 3 points, mostly because of timeout requests. We had process power to handle more
requests the RAM was fully used. So, increasing the available memory allows Rails to handle
a little more requests. Still, our focus here is how it increases the performance for those
handled users, making navigation flow softly.

6.4 EXPLORATORY ANALYSIS 43

75 9 Users p_ok_50 1000.0
Users p_ok_75 1000.0
Isers p_ok_95 1000.0
Isers p_ok_99 1000.0
Users p_ok_50 2000.0
Isers p_ok_75 2000.0
Isers p_ok_95 2000.0
Isers p_ok_99 2000.0

2
I

T
0 10000 20000 30000 40000 50000 G000
percentiles_ok (ms)

Figure 6.23: Quartiles distributions for 50, 75, 95, and 99.

75 - - Users p_ok_50 1000.0
Users p_ok_75 1000.0
Users p_ok_95 1000.0
20 1 e Jsers p_ok 50 2000.0

Users p_ok_75 2000.0
9 Users p_ok_95 2000.0

0 1000 2000 3000 4000 5000 6000 FOOO BOOO
percentiles_ok (ms)

Figure 6.24: Quartile distributions for 50, 75, and 95.

The noticeable effect is that at 100 simultaneous users, we handle 100% of the request,
as we increase to 100%, it sifts down to approximately 75% of then, and, ultimately, at 2000
users, we can handle only 50% of the requests but with an insanely high page load average
time, on its peak, reaching over 60000ms with 2000 simultaneous users and a percentile of
99%. As we can see clearly from the above plot, 75% of the successful requests at 2000 are
handled in about 1.5 seconds, which is pretty good. However, the last 24% suffers a lot with
increase server load time, but still usable, and, for least, 1% of successful requests will have
a page load time of over 60000ms, which is unacceptable. Here we need to conduct further
investigation to find that sweet spot where our cluster handles the job.

44 AN ANALYSIS OF CONSUL’S ORIGINAL CODE 6.4

75 Users p_ok_50 1000.0
IIsers p_ok_75 1000.0
Jsers p_ok_50 2000.0
Jsers p_ok_75 2000.0

T T
400 500 800 1000 1200 1400
percentiles_ok (ms)

Figure 6.25: Quartiles distributions for 50, and 75.

We shall pay attention to that with 2000 simultaneous users; the 99 percentile is 40000ms
and 60000ms. We have seen before considering that the average user should expect the page
to load under 100ms and acceptably wait until 1000ms. Still, at 10000ms, this same user
should abandon the task and think the page is broken; we are handling on a good condition
around 75% of or target group, at the point that the 95 percentile shows us the timing
of 2000ms to 4000ms which is considered a poor performance website but acetable by the
average user. Summarizing our condition, we are handling pretty good 75% of the requests,
leaving 20% with a bad experience, and the last 5% have completely abandoned us for this
poor performance.

According to what we have been discussing so far, we are pretty close to handling those
2000 simultaneous users a minute; the problem is that we need to lower those page load
response time, make navigation more reliable; our goal is not to increase the user load nor
the amount of simultaneous users, and here we hit a giant wall, what we see is that our cluster
is being throttled, we have enough CPU power to do the job but not enough memory, what
happens is that the system starts to using the swap area which leads us to disk access and
an increase in Read and Write operations. Recalling from the beginning of this chapter, we
are using a hard drive that explains why we suddenly, at this last 1%, jump from under
10000ms to almost 60000ms. And for this, unfortunately, we will have to go sideways since
we can’t increase our memory power.

Chapter 7

Proposed improvements

7.1 Strategy to decrease page load time

As we are trying to deliver data as fast as possible to increase a web application’s per-
formance, our goal is simple: cache. We are going to implement some caching on Consul on
some levels. First, we are going to cache only translations, i18n! related queries. Our second
approach is more aggressive. This time, we will cache an entire page to see how it affects the
performance since some pages like your website’s index are frequently accessed. Sometimes,
your application has to make hundreds of access to the database to get the information
required to deploy an important and frequently accessed page. This seems to be a clear sign
of a great fit for caching.

Accordingly to Instant Redis Optimization How to from Arun Chinnachamy (ref. Chinnachamy)
the great advantage that the NoSQL database brought to the industry was fast data access.
The purpose of using NoSQL, and the NoSQL movement that started to grow was the
fast data access, and again, it Redis is the leading NoSQL database for fast data in the
industry. Still, it is worth mentioning the options, which are Cassandra, MongoDB, Riak,
CauchBase, Memcached. Another interesing study about caching tools performance is Per-
formance Comparison between Five NoSQL Databases from EnqingTang, and Fan which
focus their analysis on Redis, MongoDB, CauchBase, Cassandra, HBase. In their study,
they highlight exactly what we are trying to investigate in this study. In the era of Big Data,
mobile internet, and a huge amount of devices collecting data that need to be processed
and disposed of to the client queries, performance becomes insentient. That is where NoSQL
and cache come into play. In our scenario, we apply the same content on frequently accessed
pages, which is a perfect scenario for caching. It can release the processing power required
to deliver translations for static text or the whole page, if necessary.

Another interesting analysis is NoSQL Databases: Critical Analysis and Comparison
from Adity Gupta, Swati Tyagi, Nupur Panwar, Shelly Sachdeva and Upaang Saxena (ref.
Gupta et al.). The NoSQL model differences are document, wide columns, Graph, and single
shared operation (where Redis shines. They also brought attention to the CAP theorem,
named Brewer’s theorem after computer scientists elaborated on Brewer’s conjecture and the
feasibility of consistent, available, partition-tolerant web services (ref. Gilbert, and Linch).
We would like to highlight the figure 7.1 that emphasizes the differences and advantages of
each data storage model.

'Rails Internationalization (I118n) API: https://guides.rubyonrails.org/il18n.html

45

https://guides.rubyonrails.org/i18n.html

46 PROPOSED IMPROVEMENTS 7.1

Data Perform | Scalability | Flexibility |Structure | Complexity
model ance of | of data of schema |of of values
queries database

Key- High High High Primary None

value key with
store some value
Column | High High Moderate | row Low
Store consisting
multiple
columns
Document| High Variable High JSON in|Low
Store (High) form of
tree
Graph Variable | Variable High Graph —[High
Database entities and
relation

Figure 7.1: Different NoSQL databases on basis of Non-functional features from from Adity Gupta,
Swati Tyagi, Nupur Panwar, Shelly Sachdeva and Upaang Sazena (ref. Gupta et al.).

Quoting, "Cap Theorems states that it is impossible for a distributed data store to
simultaneously provide more than two out of the following three guarantees:"

1. "Consistency: Every read receives the most recent write or an error."

2. "Availability: Every request receives a (non-error) response, without the guarantee that
it contains the most recent write."

3. "Partition tolerance: The system continues to operate despite an arbitrary number of
messages being dropped (or delayed) by the network between nodes."

And that is where Redis used together with the default Postgres database used on Consul
makes the difference. The standardized relational database provides all the benefits of ACID
(which the reader can get a deeper understanding of reading Takai et al.) where Redis enable
us to deliver fast read operations. On other words, Redis provides Availability where Postgres
provides Consistency.

Finally, we want to cite Shanshan Chen, Xiaoxin Tang, Hongwei Wang, Han Zhao and
Minyi Guo (ref. Chen et al.) that wrote Towards Scalable and Reliable In-Memory Storage
System: A Case Study with Redis, which presents an extended analysis on Redis as fast
in-memory storage access for web applications. On their analysis, it is proposed to create
a "client-node" connection on the Redis cluster, on which the client connects directly to
the correct Redis node where the correct data is stored, and accordingly to their article,
they were able to increase the performance of the cached application by 2 times. Another
interesting proposed strategy is a Master-slave Semi Synchronization over TCP, where it
improves the consistency of Redis slaves/master data and performance by 5%.

We can see a diversity of studies relating the benefits of caching for application perfor-
mance if we follow the study A Qualitative Study of Application-level Caching by Jhonny
Mertz and Ingrid Nunes (ref. Mertz, and Nunes), we see a different approach, the authors
have analyzed scenarios of application caching, ranging from automatic aching techniques,
manual caching, background work caching, and the benefits of one or the other. For exam-
ple, talking about background work caching we mean caching HTTP requests so the process
checks for a cached requests before send the requests to the controller, as we can see in figure
7.2 extracted from Jhonny Mertz and Ingrid Nunes (ref. Mertz, and Nunes) article. Accord-
ingly to the same study, over 80% of problems related to cache on famous open sources

7.2 TESTS METHODOLOGY AND ENHANCEMENTS PROPOSAL 47

Web Application Web Infrastructure
_ (2) Get(key) <—
- : > 11— N
(3) Search and return value@ull % r’ﬂjé C{éﬁ
% > e =y
_ (6) Set(key, value) <\
~
Cache

«—
—_—

‘dsad d11H (2)
"bay d1IH (1)

M1
% (4) Call computations T
: : (5) Return result
M2

Figure 7.2: Using Application-level Caching to Decrease the Application The workload from Jhonny
Mertz and Ingrid Nunes (ref. Mertz, and Nunes).

projects, such as ownCloud, Spree, Shopizer, OpenCart, Pencilblue, S1, Discourse, Open-
MRS, PrestaShop, and Open edX are related to design and implementation (when grouped
in categories), so what we can conclude from this study is that caching implementation is
hard. Still, maintenance is easy and is a great starting point. Most of the time, enterprise-
level solution for applications uses automated cache libraries which will prevent over 80% of
the problems, and, in some cases, exceed 90% of the cache-related problems.

Looking for a more complex application like PWAs (Progressive Web Applications) that
are normally built on top of the same HTML, CSS, and JavaScript technologies analyzed
on Evaluating the Impact of Caching on the Energy Consumption and Performance of Pro-
gressive Web Apps by Ivano Malavolta, Katerina Chinnappan, Lukas Jasmontas, Sarthak
Gupta and Kaveh Ali Karam Soltany (ref. Malavolta et al.). Skipping the energy consump-
tion analysis, we can benefit from its performance analysis of PWAs from a cache that we
can dramatically benefit from caching strategies where we see load items dropping from over
4 seconds to almost 0 seconds, which, from the user point of view, is instant.

The reader might be asking why Redis, and why cache, and before we were starting
digging into numbers, let us go first to see why Redis can improve our applications expo-
nentially. Accordingly to Thiao Macedo and Fred Oliveira (ref. Macedo, and Oliveira) that
wrote Redis Cookbook, we should be using Redis to optimize different kinds of applications,
shown in their book for different languages and scenarios. If we go even further, at rails 5.2
implementation, they added Redis Store built in the Ruby on Rails implementation thought
the ActiveStorage announced by "dhh" (ref. dhh) on rails development blog.

7.2 Tests methodology and enhancements proposal

By this time, the reader might already have guessed correctly; our proposed enhance-
ments are related to cache. For this study, we are going to use Redis it as a cache server.
Following Towards Scalable and Reliable In-Memory Storage System: A Case Study with
Redis (ref. Chen et al.), we are using a similar configuration based on a five nodes cluster.
The idea here is to simulate a Redis cluster with 1 master node, with 2 slave nodes and two
replicas for consistency so we can achieve a much similar production level environment on
our study. Each of the nodes gets 1000MB of RAM available to cache using the LRU (Least
Recently Used)? strategy. If we look at Analysis of a Least Recently Used Cache Management

2Web Cache Page Replacement by Using LRU and LFU Algorithms with Hit Ratio: A Case Unifica-
tion: http://cloud.politala.ac.id /politala/1.%20Jurusan / Teknik %20Informatika/19.%20e-journal / Jurnal%
20Internasional%20TT/IJCSIT /Vol%205/ISSUE%203 /ijcsit20140503122.pdf

http://cloud.politala.ac.id/politala/1.%20Jurusan/Teknik%20Informatika/19.%20e-journal/Jurnal%20Internasional%20TI/IJCSIT/Vol%205/ISSUE%203/ijcsit20140503122.pdf
http://cloud.politala.ac.id/politala/1.%20Jurusan/Teknik%20Informatika/19.%20e-journal/Jurnal%20Internasional%20TI/IJCSIT/Vol%205/ISSUE%203/ijcsit20140503122.pdf

48 PROPOSED IMPROVEMENTS 7.2

Client1 | . Clientn

Node 3

Node 2

' 3 = v A i T

\ /

Figure 7.3: Overview of a typical client-server structure for Redis distributed storage service from
Shanshan Chen, Xiaozin Tang, Hongwei Wang, Han Zhao and Minyi Guo (ref. Chen et al.).

Policy for Web Browsers from Vijay S. Mookerjee and Yong Tan (ref. Mookerjee, and Tan)
where they study this strategy for web browser caching, it perfectly fits our study case
where we are displaying a commonly accessed page. This behavior happens a lot on our
application. For example, on Consul, a platform for public debates is naturally expected to
the page which lists the frequently accessed debates. Most of the users would be navigating
from different debates and, frequently, accessing the same debates pages list to choose a new
debate to participates in. The same logic applies to polls and the legislation process.

Talking specifically about Consul, but the concept fits most of the web applications. The
majority of the page is composed of static content. And, by static, we are talking about
content that does not have the necessity of being life; it could be cached for a few minutes
if not an entire hour, or even in the cache for as long as the application stays alive, for
example, caching assets like CSS and js files. But there are still important sections of Consul
that need to be live, like the forum, the comment, and discussion section; people need to
interact with each other in real-time for the discussion to be productive.

g%«
S — G/

Figure 7.4: A decentralized design for Redis by using Gossip protocol from Shanshan Chen, Xiaozin
Tang, Hongwei Wang, Han Zhao and Minyi Guo (ref. Chen et al.).

These five static containers acting as a Redis cluster are delivered using the same host
machine, using the same simulated cluster over Minikube, so, at or max capacity, we will
have 26000MB and 8 cores dedicated to our entire cluster, including the rails application,
the database, and the Redis cluster. If Redis it gets 5000MB at its peak capacity, it leaves
Consul and the database to escalate until 21000MB of RAM. Of course, the reader might be
asking what we saw earlier in this study that we lacked RAM to increase our performance,

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING 49

that processing power is not the issue here, and we would need more memory. Still, we
actually deploy less memory to the application and the database, so what is the problem?
Counter-intuitively, by giving up 6000MB of memory to our Redis cluster, we are freeing
our rails application of process power and data allocation and retrieval, which leads to an
increase in responses, and page load times.

Our test strategy will be composed of 2 experiments, divided into the same categories and
groups of previous studies over Consul’s original code. First, we will cache only translations
and 118n related queries and files; second, we will cache entire, frequently accessed pages, as
previously mentioned. In a further section, the reader will notice, and we are talking about
simple cache, our first strategy, and more detailed implemented cache, our second proposed
analysis. The rest is simple; we are going to investigate different ranges of memory and
CPU power, from 2 cores to 8 cores and from 1024MB RAM to 26000MB RAM; the only
difference this time is that the cluster, and, consequently, host machine, will be shared with
the application, database, and Redis cluster.

7.3 Explanatory analysis - Simple caching

7.3.1 2 cores and 8000MB RAM

7 Users 1.0
Users 10.0
6 Users 25.0
Users 50.0
5 Users 75.0
o Users 90.0
S 4 Users 95.0
4 Users 100.0
« 3
2
1
0 T T T T T
0.0 0.2 04 06 08 10

% Completed requests

Figure 7.5: Completed requests with 2 cores and 8gb RAM with ramp users accessing during 60
seconds.

Let us stop here for a moment. We have a 2 cores cluster, only 9000MB dedicated to
running the simulations, and ramp users access during 60 seconds. The reader might remem-
ber from the last chapter that we will focus on or analyze one to one hundred simultaneous
users because, after that, we start to throttle the host machine. If we were to look at the
whole range until 2000 users, we would STILL be trapped on the same problem as before,
80-90% of handled requests; let us keep a closer look at a smaller range of users, focus on 1
to 100. On the above chart figure7.5, we can clearly see that our requests keep inside a range
of 86% to 100% requests handled; what is interesting is that with 50 simultaneous users, we
can keep up to 94% requests handled, keeping our application on a 5% failure acceptance
ratio, but remember, we are running with 9000MB and 2 cores only. Before we scale up to
4 cores, we need to confer the response time on such hard environment conditions.

50 PROPOSED IMPROVEMENTS 7.3

51 Users 1.0
Users 10.0
Users 25.0

41 u Users 50.0
Users 75.0

3 Users 90.0
Users 95.0

Users 100.0

0 500 1000 1500 2000 2500 3000
mean response time (ms)

Figure 7.6: Mean response time with 2 cores and 8gb RAM with ramp users accessing during 60
seconds.

Looking at the mean response time on the figure 7.6, we see two different situations. The
first one is that we got outlier 1 second response time measurements. Second, we got lower
responses time because a smaller number of requests were handled. Still, the one that was
got better responses time; in other words, the users who were lucky to get a request handled
by the server was able to navigate faster, but the number of failures is large enough to make
your user abandon the task, as we have seen previously on "how long a user waits for a
website." This is a clear example of a throttle system so the reader could get a comparison
base for core improvements that may affect our performance. Our system clearly benefits
from simple caching strategies, but we still can not fully picture the benefits and downsides
because our cluster is throttling. Let us scale up the processing power to 4 cores, still keeping
the 9000MB of RAM, to see how it affects our performance.

7.3.2 4 cores and 8000MB RAM

10 1 Users 1.0
Users 10.0
Users 25.0
8 Users 50.0
Users 75.0
v 6 Users 90.0
w
] Users 95.0
o Users 100.0
4
4 g
2 4
0- T T T
0.0 02 04 06 08 10

% Completed requests

Figure 7.7: Completed requests with 4 cores and 8gb RAM with ramp users accessing during 60
seconds.

We just doubled the cluster process power from 2 to 4 cores (still half of our total size),
and we got 96% handled requests for 50 simultaneous users for 60 seconds. Jumped from
86%-94% almost uniformly distributed for 100 simultaneous users to 94% completed requests
with a small fraction of the requests distributed on a range of 86%-94%. The most interesting
part is that we are at 9000MB RAM, and or Redis cluster uses up to 6000MB of that same

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING ol

memory. We need to keep investigating, but the first signal is that relieving process power and
dedicating some memory for caching dramatically improve the application’s performance. As
our previous research has shown us, a cache is indeed a great tool to improve performance,
and, as mentioned before, we are trying to keep it simple to avoid caching bugs or cause
more problems then solves which the number one problem when we are talking about cache,
as our previous research have shown us, caching adding another level of complexity to an
application that needs to be managed by developers.

7 Users 1.0
Users 10.0
6 Users 25.0
Users 50.0
5 Users 75.0
Users 90.0
4 Users 95.0

Users 100.0

0 500 1000 1500 2000
mean response time (ms)

Figure 7.8: Mean response time with 4 cores and 8gb RAM with ramp users accessing during 60
seconds.

As seen before, we have got a great overall performance with 4 cores for 100 simultaneous
users. In the worst scenario, we could lower our max mean page load time to 3000ms,
which is 2000ms lower than the previous iteration with 2 cores, as the reader can see in
the figure 7.8. That is time to double to process power again and see what happens. But
look what is happening here, except for the minimal amount of users, like below 25. We see
almost a normal distribution here, as the number of users increases during a small period
of time, accessing and using the same resources, cache stat acting. We got the performance
improvements we were talking about, and we just hit the 3 seconds page load time that was
quoted from Google’s research early on this study for 100 simultaneous users.

Before we jump into our top process power capacity, let us look at the first half of the
chart figure 7.8, considering that RAM is our main issue here. We are on a small cluster, we
were able to deliver great response time up to 25 simultaneous users, keep all of then under
1000ms and the reader might want to look again at the figure;7.7, we were able to deliver
such good response time to 99% of those users which is as perfect as it is possible to if we
take into considerations occasional failure due he network itself.

Ok, we are sure the improvements are great, but what have we achieved so far? How
better it is from 2 cores? Did we get actual improvements Doubling of performance? This
is a simple question; let us compare both plots. First, let us look at figures 7.7 and 7.7show
us the completed performance, and we can see that the performance keeps static at 98%-
99%, but what about response time? Looking for figures 7.8 and 7.8this time we see great
improvements, jumping from the mean response time of 3000ms to as low as 500ms mean
response time, which is a 6-time improvement in performance.

52 PROPOSED IMPROVEMENTS 7.3

7.3.3 8 cores and 8000MB RAM

10 1 Users 10.0
Users 25.0
Users 50.0

W Users 75.0
Users 90.0

61 Users 95.0

Users 100.0

Request

T T T T
00 02 04 06 08 10
% Completed requests

Figure 7.9: Completed requests with 8 cores and 8gb RAM with ramp users accessing during 1
second.

10 A1

Users 75.0
Users 90.0
Users 95.0
BN Users 100.0
Users 125.0
Users 150.0
2 Users 175.0
Users 200.0
Users 225.0

Request

00 02 04 06
% Completed requests

Figure 7.10: Completed requests with 8 cores and 8gb RAM with ramp users accessing during 10
seconds.

This is our top process power capacity. We will be increasing only the RAM to investigate
its performance, which is also, until now, what is most affecting response time counteracting
cores power, which improves the number of requests we can handle. Now, look at the figure
7.9, but it makes it a little hard to analyze such a plot, so let us concentrate on the figure
7.10. Now that we completed the group with the outlier, we can see that we could handle
most of the requests at almost 92% of them for 100 simultaneous users. Interestingly, with
up to 75 simultaneous users, we were able to deliver over 95% of the requests. It is about 1
second time period, just as a comparison base for further analysis with increasing memory.

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING 593

10 1

Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
21 Users 90.0
Users 95.0
Users 100.0

Request

00 02 04 06 08 10
% Completed requests

Figure 7.11: Completed requests with 8 cores and 8gb RAM with ramp users accessing during 10
seconds.

In the figure, 7.11we see a plot for ram user access during 10 seconds, and on the fig-
ure,7.12 the same tests but for a period of 60 seconds. We can clearly see that for both
plots, figures 7.11 and 7.12 we handled over 90% of the requests for most users, and that
increase the time duration increase from 1 second to 10, and then 60 seconds have shifted
our comparison point slightly. As the readers might want to check for themselves, comparing
both plots, we see a more concentrated number of users over 90% when we look at the 60
seconds chart. Looking for those 3 plots, we see that, as expected, when we increase our time
range, we can accommodate more simultaneous users, and it is not a process burst power
needed o a shot period of time. Still, a well-distributed range of users accesses a long period
o time.

10 1 Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
64 Users 90.0
Users 95.0
Users 100.0

Request

21

j I

0.0 02 04 0.6 08 10
% Completed requests

Figure 7.12: Completed requests with 8 cores and 8gb RAM with ramp users accessing during 60
seconds.

The problem with those burst access like on figure 7.11 is that simulating 100 users
accessing a web application during 10 seconds is the same as 600 users accessing the same
application during 60 seconds and see this heavy payload on our servers that the just dropped
our capacity of handling simultaneous users at the tax rate of over 99% to 75 users to less
than 95% to 25 users, and that is the same reason we have a wider group of requests closer
to 82%. If we were to consider the plot on the figure,7.9 we could clearly see our outlier
metrics justified for such a short period of time since we are simulating all those users
accessing the application at the same second, removing it, and looking at the plot on the
figure 7.10 we clearly see one-second burst access break a little bit more requests but the

54 PROPOSED IMPROVEMENTS 7.3

overall performance, when talking about the number of handled requests, keeps the same,
but the performance related to responses times drops in fast.

But before we jump into response time, let us remember the plots on figures 7.5, 7.7, and
7.12 which representing the number of completed requests for 2, 4, and 8 cores, respectively.
We jumped from poor numbers related to handled requests and in some cases handling only
65% of them, but all the way up to 8 cores we were able to tweak those number into higher
percentages, going up to 92% of the users for 90 simultaneous users and over 86% for our
ideal goal of 100 users.

Now let us talk about response time and how those are affected by an increase in the
time range, from 1 to 60 seconds and, of course, comparing with 4 and 2 cores. We will
focus on the plots on figures 7.13, 7.14, and 7.15 which measure response times for ramp
user access during 1, 10, and 60 seconds.

51 Users 1.0
Users 10.0
Users 25.0

s Users 50.0
Users 75.0

3 Users 90.0

Users 95.0

Users 100.0

0 250 500 750 1000 1250 1500 1750
mean response time (ms)

Figure 7.13: Mean response time with 8 cores and 8gb RAM with ramp users accessing during 1
second.

61 Users 1.0
Users 10.0
5 Users 25.0
B Users 50.0
Users 75.0
Users 90.0
Users 95.0
Users 100.0

0 250 500 750 1000 1250 1500 1750
mean response time (ms)

Figure 7.14: Mean response time with 8 cores and 8gb RAM with ramp users accessing during 10
seconds.

As e have seen before, lower our time interval has a small impact on the number of
requests handled and, as the reader is about to check for his own here, those timestamps
get a small impact, as well, on response time measurements. Start looking for the plot,7.13
we see pretty poor performance, response time going up to 2500ms distributed all over the
spectrum with lower amounts of simultaneous users getting better response time, and as we
increase the number of simultaneous users, those same requests increase their duration to
over 2000ms and almost 2500ms.

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING 95

Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
Users 90.0
Users 95.0
Users 100.0

0 500 1000 1500 2000
mean response time (ms)

Figure 7.15: Mean response time with 8 cores and 8gb RAM with ramp users accessing during 60
seconds.

Before we make another performance level jump, the plot 7.15 tips us of the behavior
we saw before. If Consul original code, we reach a level we see a softening effect where our
cluster starts to fit our users better. We start seeing more uniformly distributed access plots.
From the last plot we see we can keep 50 simultaneous users under 1000ms, 75 users under
1500ms, and, of course, keep all those 100 users under Google’s 3-second rule of thumb
mentioned here many times. However, we are racing to under 1000ms performance, and we
still can triple our memory capacity.

Keep on our exercise of backtracking, look at figures 7.6, 7.8, and 7.15, for 2, 4, and 8 cores
respectively we see that we start with a peak performance under 5000ms, which is good but
was not good enough. When we jumped to 4 cores, we lowered those numbers by the entire
2000ms, going to 3000ms at worst performance, meaning we improve our response time by
60%. Then we doubled again, this time to 8 cores, but, now our performance just lowered
to 2500ms at the worst-case scenario, and again, as before, those last stage of performance
seems to be the hardest to achieve, remembering me of Pareto principle, where the last 20%
of performance improvements will take 80% of the effort.

7.3.4 8 cores and 16000MB RAM

We are almost reaching our host machine top capacity for simulating our cluster. Let us
jump into 16000MB of RAM and 8 cores with 5 nodes Redis cluster. Until now, the whole
analysis was focused on process power and the number of cores; in our simulation scenarios,
cluster nodes, as known as each core simulating a single core machine running one or multiple
containers. As the reader might remember, we could see some response time improvement as
we increase the processing power. However, it is still important to remember the processing
power is mostly responsible for the number of completed requests; the RAM is responsible
for response times. having said that, we are now going to shift our analysis’s target by seeing
more improvements in response times than the number of completed requests.

56 PROPOSED IMPROVEMENTS 7.3

Users 1.0
10 1 Users 10.0
Users 25.0
Users 50.0
81 Users 75.0
o Users 90.0
L 6 Users 95.0
-4 Users 100.0
e
4
2 4
0 T T T T
0.0 0.2 04 06 08 10

% Completed requests

Figure 7.16: Completed requests with 8 cores and 16gb RAM with ramp users accessing during 60
seconds.

Now let us look at the figure;7.16, we have a great overall performance of up to 90
simultaneous users to deliver over 95% of the requests. The interesting part is that we see
most of 100 users distribution over 94% requests ratio with its peak concentration at 97%.
Still, we can clearly see a small fraction of our requests between 80% and 85%, which is
intriguing and need further investigation.

81 Users 1.0
Users 10.0
1 Users 25.0
6 - Users 50.0
Users 75.0
51 Users 90.0

Users 95.0
Users 100.0

0 500 1000 1500 2000 2500 3000
mean response time (ms)

Figure 7.17: Mean response time with 8 cores and 16gb RAM with ramp users accessing during
60 seconds.

On the other hand, focusing on mean response time, on the figure,7.17 we see that in
the worst-case scenario, we are still on 2500ms. Comparing the results we see here to the
ones shown on the plot 7.15 immediately brings to our attention that the performance did
not increase. What is interesting that we see here is that we double the memory. Still, the
chart just bounced around its mean; it is like the extra 8000MB of memory could ear us
just a few milliseconds, and its event 1% shift in completed requests improvements. It is like
we are reaching some kind of roof where we can go through, which is a signal that we are
throttling or need much more power to gain those few extra percentages.

Before we make another performance jump, we want to take a closer look at plots 7.17
and 7.15, comparing each group of users. Starting from 10 simultaneous users, we see that the
distribution kept almost the same, under 500ms but with a small group around 800ms. At 25
users, we can keep under 500ms witch is the same as the 1000ms limit for the plot 7.15. Going
up to 50 users is our limit under 2 seconds limit, but we still see the same pattern repeatedly.
With 75 simultaneous users, things start to change, we still keep all requests under 2000ms

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING o7

with 16000MB of RAM, but at 8000MB, we see a slight fraction of the requests above the
2000ms threshold. Over 90 users start to face problems, the distribution range goes from
1800ms to 2500ms on both plots, but they are more uniformly distributed in the figure 7.15.

7.3.5 8 cores and 26000MB RAM

Finally, here we are, 2600MB RAM and 8 cores with 5 nodes Redis cluster with 6000MB
RAM, this is our peak cluster performance, so our analysis on basic cache reaches our best
scenario. Further in this study, the reader will encounter an analysis of advanced caching
where we will cache specifics parts, pages, or routes of the application and compare the
performance gains versus the increase in complexity add to this granularity cache strategy.

7 Users 1.0
Users 10.0
6 Users 25.0
Users 50.0
5 Users 75.0
- Users 90.0
§ 4 Users 95.0
g Users 100.0
€ 3

LN B

0.92 093 094 095 0.96 097 098
% Completed requests

Figure 7.18: Completed requests with 8 cores and 26gb RAM with ramp users accessing during 60
seconds.

Let us start our analysis with a plot 7.18 and compare it with our previous results
from plots 7.16, and 7.12. looking at the above, we see improvements, but soft ones. Let
me explain; looking at the figure 7.18 we see that for up to 50, we handled 100% of the
requests; at 75 users, we see some outliers around 94% to 98% of the requests; we see a
pretty interesting thing here, our target group, 100 simultaneous users, just shift around
95%, entering our 5% acceptance ratio.

As we can see, different from the last step where we doubled the RAM amount from
8000MB to 1600MB, this time, increase another 10000MB of RAM we can handle all those
users, we still have some outliers but at 100 simultaneous users, we tests are doing over
26000 requests during this time period which make it practically impossible not to have any
timeouts of outliers requests due to multiple factors like routing.

The difference that we see here in the figure 7.18 is small. Before, on the figure 7.16,
and 7.12 we saw a significant amount of request around 80% to 90% percent, and doubling
the memory power, as we have seen before, was not enough to show us great performance
improvements, which was rather frustrating. Still, here we see just a small fraction of 100 user
distribution landing on lower requests, and we can safely assume us on inside our safe limits.
Those requests out the cluster around 95% are outliers, and we will see further investigation
on this outlier behavior in the next section.

58 PROPOSED IMPROVEMENTS 7.3

12 Users 1.0
Users 10.0
10 Users 25.0
Users 50.0
8 Users 75.0
Users 90.0
Users 95.0
6 Users 100.0

0 250 500 750 1000 1250 1500 1750 2000
mean response time (ms)

Figure 7.19: Mean response time with 8 cores and 26gb RAM with ramp users accessing during
60 seconds.

We need to take a closer look at the mean response chart is plotted in the figure
7.19. Starting from 10 users, here we see no much difference between 26000MB (fig. 7.19),
16000MB (fig. 7.17), and 8000MB (fig. 7.15). The same behavior applies to 25 simultaneous
users, which leads us to one conclusion, to those levels we reach peak performance and no
matter how we increase our cluster we will still see those same results. The interesting is
that we keep seeing some outliers where, even at 50 simultaneous users, we can see some
requests lasting longer than 1500ms, which is an incredibly high wait time for such a small
number of users with that processing power, which also explains why at 100 simultaneous
users we see some requests seems not being handled.

At 75 users, we see slight improvements, our mean response time distribution peaks
migrate from 1000ms-11000ms to 900ms, but as seen before, it is not a great difference and
could be due to small environmental changes. On 95 users, we keep on the same behavior
across the 3 levels of RAM, 7.15, 7.17, and 7.19. Going to the border of our study case, at 90,
95, and 100 users, we face the same problem as we did on the section before with 16000MB
of RAM; the increased amount is not large enough to allow us to see bigger differences here.
Still, it shows us that to increase users’ last gap; we have to increase the effort by doing a
more granular cache strategy.

If it is worth adding another level of complexity to the application by doing manual
caching for partials and pages, routes, or requests, which is the main problem of caching?
This is what we will be investigating in section 7.4. Until now ,we were trying to keep
things simple and avoid adding another layer, which will certainly bring more bugs to our
application and add more needing maintenance, so we kept only automatic caching and
translations caching. But before we advance on manual caching, let us take a step back
and look from afar into our simulations. We need to get an overall understanding of these
experiments and this time focusing on the global conditions.

7.3.6 Test analysis

Before we jump into a general analysis of our case scenario, we would like to use the
plot 7.20 and 7.21 to demonstrate why focus on simulations with a higher number of users
is of no need for us in this study. First, let us look at the plot 7.21 we can handle the
request pretty well, all of the tested groups keep under 3 seconds limit set by Google that
we already mentioned. But, if we pay attention to the plot 7.20 we can spot the problem
right on the way. Our request handled peak is 80% for 500 users, increasing all the way up
to 2000 simultaneous users make our requests rate drops to as lower as 20%-30% which is

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING 59

even less than 1000 simultaneous users rate, which is between 50% and 70%. The problem
here is that even on 500 simultaneous users our acceptance ratio is pretty low, we can not
miss one out of 5 requests.

10 1 mem Users 125.0
Users 150.0
Users 175.0
Users 200.0
Users 225.0
Users 250.0
Users 275.0
Users 300.0
4 Users 2500.0
Users 3000.0
W Users 5000.0

Request

02 03 04 05 0.6 07 08 09 10
% Completed requests

Figure 7.20: Completed requests time with 8 cores, 26624mb RAM for 60 seconds for over 100
simultaneous users.

W Users 125.0
Users 150.0
Users 175.0

W Users 200.0
Users 225.0

W Users 250.0
Users 275.0

W Users 300.0

Users 2500.0

Users 3000.0

Users 5000.0

1000 1500 2000 2500 3000
mean response time {ms)

Figure 7.21: Mean response time time with 8 cores, 26624mb RAM for 60 seconds for over 100
simultaneous users.

The reader might have noticed that we had brought to our attention that we had outliers
numerous times during these plots, now we need to take a closer look into these outliers and
see how sparse is these experiments. And here we will divide into 4 groups, percentile 50%,
75%, 95%, and 99%. Let us start our analysis with the 50% percentile and go all the way
up to 99%.

60 PROPOSED IMPROVEMENTS 7.3

= 1

400

300

e ae UL

[+] [¢]
2 =
1 0

25 50 s 90 %5 100
simultaneous users

Figure 7.22: Response time in milliseconds for 50% requests.

If we pay attention to the figure 7.22 we can see that as we increase the number of
simultaneous users, and, consequently, the raw amount of requests shooted through the
server, the number of outliers increase, and, like we have seen on other plots (figures: 7.19,
7.17, 7.15, 7.8, and 7.6) we can clearly see the distribution clustering over 90% but some
request close to 80% e that is out outliers that we were talking previous on this study, as we
were guessing before, now we are sure that this measurement could be excluded focusing on
the correct results.

1000 I

800

600

20(]&]:1':&]@@ |

1 10 25 50 B 90 %5 100
simultaneous users

Figure 7.23: Response time in milliseconds for 75% requests.

The plot 7.23shows us exactly the problem we saw in this whole analysis, and at the same
time, proves to the reader what we have been discussing. We reached 100 simultaneous users
with over 95% completed requests ratio, but there are outliers, and there will always be,
which is why we have seen strange results across our plots. But as we decrease the interval
width, we start seeing a different behavior.

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING 61

3000 o

o
2500
2000
1500
1000

8
s
.| ==
1 10 25 50 75 90 % 100

simultaneous users

Figure 7.24: Response time in milliseconds for 95% requests.

We need to stop here on the plot 7.24. Differently from 7.23 and 7.22 we see here on 7.24
outlier all the way up to 95 simultaneous users. Still, at 100 simultaneous users, we see a
bigger interval but no outliers. Of course, we exclude 1 simultaneous user since that is not
much data to be analyzed. if the reader takes a closer look at this last boxplot, we see that
the upper half is sparse precisely to the median line. In contrast, the lower half is denser,
backed up by outliers only on the upper half (which represents higher response times). This
confirms that our small percentages of not completed requests have higher response times is
due to outliers on the HT'TP interface.

60000
o
50000
40000
8
30000
20000
10000
0 T
1= & =
1 10 3 0 75 %0 % 100

simultaneous users

Figure 7.25: Response time in milliseconds for 99% requests.

We can analyze the 95 and the 99 percentiles together as the behavior is similar. In the
figure 7.25 we start to see fewer outliers as the length of the interval has sort. But, the
interesting part here is to notice how the response time (y-axis) has increased. On the plot
7.22, for 50% of the requests only, the response time was 800ms. As we increase to 75%,
the response time increased to 1200, which is still excellent. Going to 95%, things start
to deteriorate, response time, counting the outliers is up to 3500ms, and without then, it
would be 5000ms, for 100 users. And finally, for 99%, we see that the response time is up
to 60000ms, or 60 seconds, which is incredibly high, and this behavior happens even on 25
simultaneous users. If the reader could pay attention to 10 simultaneous users on the figure
7.25, the reader might notice that even on 10 simultaneous users, we see responses time of
over 20000ms (on outliers), and this give us a hint that no matter how big our cluster be,
it will always be some requests that will break of taking longer responses time, and that is
due to our protocol, we can not do anything about it.

62 PROPOSED IMPROVEMENTS 7.3

At this point, data become very dense, so we are going to divide into 4 groups, again, at
the same 4 groups, 50%, 75%, 95%, and 99% percentiles plots, printed out on figures 7.26,
7.27,7.28, and 7.29 respectively. Let us begin with the plot7.26.

74 Users p_ok_501.0
Users p_ok_50 10.0
6 1 Users p_ok_50 25.0

Users p_ok_50 50.0
Users p_ok_50 75.0
Users p_ok_50 90.0
Users p_ok_50 95.0
Users p_ok_50 100.0

T T T
200 300 400 500
percentiles_ok (ms)

Figure 7.26: Completed response time histogram for percentile 50%.

If we focus on the plot, 7.26we can see the same behavior we spotted earlier and confirmed
our guesses that there is a small percentage of outliers on the requests. We can see that most
of the requests for 100 simultaneous users land on 200ms, some on 400ms, and our outliers,
about 800ms. The interesting part is that we see this behavior for 95, 90, and 75 users,
look for the upper half of the plot labels. If we look to the lower half, from 10 to 50 users,
the results are clustered around 100ms to 200ms, but the outliers for from 300ms to almost
500ms.

6 Users p ok 7510
Users p_ok_75 10.0
5 Users p_ok_75 25.0

Users p_ok_75 50.0
Users p_ok_75 75.0
Users p_ok_75 90.0
Users p_ok_75 95.0
Users p_ok_75 100.0

|

400 600 800 1000
percentiles_ok (ms)

Figure 7.27: Completed response time histogram for percentile 75%.

As we have seen on the boxplots earlier on the figure 7.22 and 7.23now on figures 7.27 and
7.26now with response time on horizontal axes. As the reader might have already spotted,
for 100 users, up to 75% of the requests we handle it with an excellent response time of
100ms to 200ms, and even the outliers only increase those numbers up to 800ms.

If the reader remembers from our previous research, we should never take more than 5
seconds to load a web page because we could lose SEO ranking, and the user might leave the
task behind. And here, for the 95% percentile, we just hit this limit and increase it by 40%,
increase our maximum response time to almost 3500ms, which is 500ms over our desired
limit.

7.3 EXPLANATORY ANALYSIS - SIMPLE CACHING 63

s Users p_ok 9510
10 Users p_ok_95 10.0
Users p_ok_95 25.0
Users p_ok_95 50.0
Users p_ok_95 75.0
Users p_ok_95 90.0
6 Users p_ok_95 95.0
Users p_ok_95 100.0

0 500 1000 1500 2000 2500 3000
percentiles_ok (ms)

Figure 7.28: Completed response time histogram for percentile 95%.

12 W Usersp ok 9910
Users p_ok_99 10.0
10 Users p_ok_99 25.0

WSS Users p_ok_99 50.0
Users p_ok 99 75.0

WS Users p_ok_99 90.0
Users p_ok_99 95.0
Users p_ok_99 100.0

0 10000 20000 30000 40000 50000 60000
percentiles_ok (ms)

Figure 7.29: Completed response time histogram for percentile 99%.

Finally, if we pay attention to the plot 7.29, differently from all other plots, to handle
99% of the requests, we have to increase our cluster resource on an impracticable level, it
is just not worth it. If we remember together, we are with 8 cores, 26000MB RAM, and
citeRedis cluster disposal of our application. For over 10 simultaneous users, the response
time is higher enough to make our website got a low score on the SEO index and make
all of our users tired of using the service. Think about the Pareto principle, this last 1%
would be worth only for big companies in technology industries, but not what most of the
enterprise-level applications would have the technical or financial capacity to handle.

W Memory 26624
Memory 16484
Memory 8192

cores
© H N W B UV O N @

00 02 04 06 08
% completed requests

10 12 14

Figure 7.30: Number of completed request x number of cores.

64 PROPOSED IMPROVEMENTS 7.3

Cores 2
Cores 4
Cores 8

25000

20000

15000

memory

10000

5000

0 1000 2000 3000 4000 5000 6000 7000
mean response time (ms)

Figure 7.31: Mean response time for completed requests x memory amount.

Before we finish this section, we would like to look at the plots’ number of completed
requests and mean response time variations according to cores and RAM 7.30. As we can
see from the above plots, as we increase memory and the number of cores, we reach 100%
requests. On the other hand, focusing on the plot 7.31, we can see how response time
decreases over resources increase. The plot 7.31 clearly shows us that around 8 cores, response
time stick around 2000ms, against initial 6000ms-8000ms for 2 cores. Talking about process
power and cores, we can better understate its effects by looking at the plot 7.30 where we
can clearly see 1024MB of RAM running 0 requests, but as we increase memory, we reach
over 90% requests. Similarly, we can spot for 8 cores, numbers of requests being dramatically
impacted by RAM. Now, let us jump into advanced caching, where we will be using partials
and page caching to identify if the benefits are worth the increase in complexity.

Finally, we would like to point out to 7.32 hat memory is the main responsible for
lowering the mean response time. We second of that would be the replica set; as we increase
the number of replicas, we cannot decrease mean response time and increase the number of
handled requests. Following the number of handled requests, cores play an important role
in memory, but memory is definitely one of the main ones responsible for performance.

7.4 EXPLANATORY ANALYSIS - ADVANCED CACHING 65

number_of simultaneos_users -
delayed -
cores - .

memory -

replicas -
total_requests_ok -
total_requests_fail S0

03
t so0 4
t 800_1200 02
t 1200 29
failed o1
minResponseTime_ok -
minResponseTime_fail - .
- -00
maxResponseTime_ok .
maxResponseTime_fail . -_01
meanResponseTime_ok - '
meanResponseTime_fail - 02
standardDeviation_ok - '
standardDeviation_fail . 03

percentiles_50_ok -
percentiles_50_fail .
percentiles_75_ok -
percentiles_75_fail .

|
percentiles_95_ok

percentiles_95_fail - ..
percentiles 99 ok 100 [IIII ¥ HEEEEEEEEEEER
rcentiles 99 fail y B T I -
pe B
w n x = = X = = X = =X = X = X =
§§EE.§°|2.§§§Eglu’fl°|E|%|2,°|E|%|£,°|£,°|£,°|£,
FCIEfaoCetrtYtyEsRaresasg
'e EE K} 2 E ok S F = ®8 &2 w I wn () [T |
g g3 & AL - R
g gg - AEEEESEEEEEEREREE
= = = 3 S 8 A g € g €E g €E g €
s = 22228888888y
£ £ L8 iS5 agugafag
: isi:1:1:, @
3 - 5 H g
g EE g
2
E
2

Figure 7.32: Correalation heatmap.

7.4 Explanatory analysis - Advanced caching
7.4.1 2 cores and 8000MB RAM

200 1

e Users 1.0
Users 10.0
175 1 e Users 25.0
150 { ™™ Users 50.0
W Users 75.0
o~ 125 1 = Users 90.0
o Users 95.0
g 100 1w Users 100.0
0.75 1
0.50 1
0.25 A
0.00 T T
-0.4 -0.2 0.6

Yo Completed requesis

Figure 7.33: Mean response time with 2 cores and 99b RAM with ramp users accessing during 60
seconds.

66 PROPOSED IMPROVEMENTS 7.4

Accordingly to what we have been studying so far, we will focus this part of the analysis
on 1 to 100 simultaneous users. Unlike the last section, where we relied on rails gem’s
automatic caching to make things simpler a bug-free, we will use advance caching strategies
where we select specific parts of the code in the cache. This section will use a cache of partials
of views, query results, and compare to the last section results and hope to discover if it is
worth increasing software complexity is given performance improvements.

B Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
Users 90.0
Users 95.0
Users 100.0

1000 2000 3000 5000
mean response time {ms)

Figure 7.34: Mean response time with 2 cores and 9gb RAM with ramp users accessing during 60
seconds.

If we start by looking at the plot,7.33 we see that for 50 users, we can handle over 94% of
the requests; for 25 users, this number increase by up to 98%, while 100 users keep between
86% and 94%. If the reader remembers, from the last section, on plot 7.5, we see many similar
results, where the number of completed requests keeps very close to each other. Talking about
response time, we should compare 7.6 and 7.35, and here we see something interesting. Here,
with a more complex cache scenario, we see a higher response time than previous tests. With
the increased overhead to cache given the number of requests, we could not see benefits from
the requests, and with a lack of resources, we end up with less performance. And this shows
us in some environments, it is not ideal for increasing cache complexity.

7.4.2 4 cores and 8000MB RAM

ﬁ B Users 1.0
E- Users 10.0
=4 Users 25.0
Users 50.0
Users 75.0
Users 90.0
Users 95.0
Users 100.0

=

T T
0.0 02 04 06 08 10
% Completed requests

Figure 7.35: Mean response time with 4 cores and 9gb RAM with ramp users accessing during 60
seconds.

7.4 EXPLANATORY ANALYSIS - ADVANCED CACHING 67

With 4 cores, we are still far behind ideal process power, and as we can see on the plot
7.35 and 7.7 that, and keep on the same complete requests interval. If we compare to previous
experiments with 2 cores, we see a slight shift in requests interval were on 100 users, outliers
requests spot between 88% and most of the requests keeps between 92% and 96% requests,
for 50 users, the number of completed requests increase up to 98%, a small improvement.

40 1 s Jsers 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
Users 90.0
Users 95.0
Users 100.0

35

304

2.5

o 250 500 750 1000 1250 1500 1750 2000
mean response time {ms}

Figure 7.36: Mean response time with 4 cores and 9gb RAM with ramp users accessing during 60
seconds.

If we pay attention to the plot,7.36 we see the same interesting behavior. We do not
have enough resources to be worth advancing, and we actually see the worst performance
results. Unlike previous tests, on plot 7.34, doubling process power makes us able to decrease
response time peak to 3000ms, but it is still 1000ms bigger than previous experiments with
basic caching.

7.4.3 8 cores and 8000MB RAM

Unlike the previous analysis, now we are at our peak process power capacity on our
simulated cluster. Let us start our analysis by comparing the results here and the ones from
the previous section.

51 e Users 1.0
Users 10.0
Users 25.0
41 . Users 50.0
Users 75.0
3 B Users 90.0
u Users 95.0
T Users 100.0
=3
2 -
) |
0- T I \I

00 0.2 04 06
% Completed reguests

Figure 7.37: Mean response time with 8 cores and 9gb RAM with ramp users accessing during 60
seconds.

Now stop, let us stop here a moment and look at the plot 7.37 compared to 7.12. We
see similar results on both experiments, which suggest that we need a requirement of at

68 PROPOSED IMPROVEMENTS 7.4

least 8 cores to even the results we see on simpler caching strategies, up to 50 simultaneous
users there a 98% completed quest rate. If we do not consider the outliers, requests for 100
simultaneous users are over 94% rate.

3.0 1 e Jsers 1.0
Users 10.0
25 Users 25.0
Users 50.0
Users 75.0
Users 30.0
Users 95.0
151 Users 100.0

2.0 1

10 1

05 A

oo -
0 250 500 730 1000 1250 1300 1750 2000

mean response time {ms)

Figure 7.38: Mean response time with 8 cores and 9gb RAM with ramp users accessing during 60
seconds.

Plot 7.38 make it even clearer to understanding the outliers, here we see requests for 1
simultaneous user taking over 2500ms, and this is due to caching all the content on the first
request, and as we have a lot of more requests to cache, we see an outlier of over 2500ms. On
the other hand, by looking at our plot and excluding the outliers, we see the same 2000ms
response time for all the way up to 100 users, which is similar7.15. Let us make another
jump, this time into 16000MB RAM.

7.4.4 8 cores and 16000MB RAM

51 e Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
+ Users 90.0
o Users 95.0
E‘ Users 100.0

T T
0.0 0z 04 0.6
% Completed reguests

Figure 7.39: Mean response time with 8 cores and 16gb RAM with ramp users accessing during
60 seconds.

Following the behavior we have been following on previous experiments, the percentage
of completed responses on the plot 7.39, excluding outliers, keep above 94% for all users.
If we compare to the plot 7.16 we finally see an improvement of like 1%-2%, which is
frustrating, give the wide increase in complexity on this cache strategy. According to our
previous research, the problem here is that the cache has been flagged as one of the main
reasons behind new bug sources, and a 1% to 2% increase in the number of responses time
does not seem like a scalable solution.

7.4 EXPLANATORY ANALYSIS - ADVANCED CACHING 69

51 Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
3] Users 90.0
Users 95.0
Users 100.0

1] 250 500 750 1000 1250 1500 1750 2000
mean responsa time {ms)

Figure 7.40: Mean response time with 8 cores and 16gb RAM with ramp users accessing during
60 seconds.

By looking into the percentage of completed requests, we showed the reader that it is
not worth the complexity of advanced caching when talking about the completed request
number. Let us see on mean response time, start by comparing the plot,7.40 and 7.17 we see
an interesting behavior; on the plot,7.17 we see the peak response time of 2500ms, and now,
on the plot 7.40, the peak response time is 2000ms, which is against what we have seen so
far. But the interesting here is that there are no significant improvements in mean response
time; add that to the fact that there is only 1% to 2% improvement in the percentage of
completed requests, we start to see signs that advance caching simply is not worth. Let us
jump into our peak performance at 8 cores and 26000MB RAM to finish this analysis.

7.4.5 8 cores and 26000MB RAM

51 Users 1.0
Users 10.0
| Users 25.0
4 Users 50.0
Users 75.0
3 Users 90.0
u Users 95.0
T Users 100.0
=
2 B
1 B
D T T T T T
0.0 0.2 04 06 08 140

% Completed reguests

Figure 7.41: Mean response time with 8 cores and 26gb RAM with ramp users accessing during
60 seconds.

Finally, here we are, our peak capacity, 8 cores, 26000MB, and advanced cache; this is
the last step of our research. Now we will focus on 7.41 and compare against 7.18 to discover
ones for all if it is worth advance caching since we already saw that the advanced-cache could
be dangerous in small environments. Starting from the plot,7.41 we see the same behavior
7.18 where there is a small percentage of outliers, and the number of completed requests
keeps above 96%, and for smaller batches of users, they keep around 98% and 100%, nothing
new.

70 PROPOSED IMPROVEMENTS 7.4

Users 1.0
Users 10.0
Users 25.0
Users 50.0
Users 75.0
Users 90.0
Users 95.0
Users 100.0

T
250 500 750 1000 1250 1500 1750 2000
mean response time {ms)

Figure 7.42: Mean response time with 8 cores and 26gb RAM with ramp users accessing during
60 seconds.

Skipping to mean response time, let us take a look at 7.42 and compare against 7.19. Now
on response time, we see a small difference. Before we saw a sparse distribution of requests
response times, now we see a more fixed and small range for each user group. Nonetheless,
we see a smaller response time; all requests keep on the 2000ms time range, which shows us
that we could not lower this metric with our available hardware.

If the reader pays attention, up to 25 simultaneous users can hold a mean response time
as lower as 250ms, which is fantastic. But as we escalate just up to 100 simultaneous users,
which is 4x the number of simultaneous users, the mean response time jumps from 250ms
to 2000ms, 8 times the initial response time. In other words, the mean response time is
increased at a faster rate than a linear correlation. On the other hand, we are still under
the 3 seconds rule of thumb of Google’s SEO recommendations. Now we are going to make
a general analysis of the test distribution.

7.4.6 Test analysis

Comparing boxplot 7.43a and 7.22, referring for percentile 50% of the requests, we see
the same behavior and the same mean response time interval. Figures 7.43b and 7.23 as
on boxplot for 50% show the exact time interval and outliers groups. As the reader might
already expect, the same behavior happens when we are talking about 95% of the requests
on plots 7.43c and 7.2499 on plots 7.43d and 7.25.

Now we will look at the bar plot of completed requests and mean response time to see if
we can spot any differences. By looking into 7.44, more precisely, on 7.44a and comparing
against,7.31 we see, again, the same mean response time intervals and outliers, which show
us that advance caching has proven itself not to be worth the complexity. The reader might
be wondering if it is the answer to all scenarios, and be sure that it is not; the case we see
here is that we are already at or lower response time as possible given our hardware.

EXPLANATORY ANALYSIS - ADVANCED CACHING

200 800 S
350 0
200 600
250 s0o
200 400
50 300
100 e ° é 200
of OO sl
o o
10

1

100

3

SRS %
o

T 3 % % % %
simultaneous users

3 s 75 % % 100 1
simultaneous users

(a) Response time in (b) Response time in
milliseconds for 50% requests. milliseconds for 75% requests.

000 60000

2500 50000 o

2000 o °

1500 30000

1000 20000

501 °© 10000
0 = O

a

. - =
1 w3 s 75 W % 100 1 1 % s 7m0 % 100
simultaneous users simultaneous users
(c) Response time in (d) Response time in

milliseconds for 95% requests. milliseconds for 99% requests.

Figure 7.43: Bozplot distribution of mean response time for advanced caching

e Cores 2
Cores 4
b Cores 8

e Cores 2
Cores 4
e Cores 8

00 02 04 06 08 10 12 14 1000 2000 3000 4000 5000 6000

% completed requests mean response time (ms)

(a) Mean response time for completed (b) Mean response time for completed
requests amount of completed requests requests T memory amount.

Figure 7.44: Bar plots for completed request and mean response time grouped by cores

72 PROPOSED IMPROVEMENTS 7.4

number_of simultaneos_users -
delayed -
cores -
memory -
replicas -
total_requests_ok 1
total requests fail J0

03
t 80O -
t 800_1200 - 0.2
t 1200 -
faited B 01
minResponseTime_ok -
minResponseTime _fail - -0.0
maxResponseTime_ok .
maxResponseTime_fail . --0.1
meanResponseTime_ok 7
meanResponseTime_fail - -0.2
standardDeviation_ok 7
standardDeviation_fail - -03

percentiles_50 ok -
percentiles_50_fail -

percentiles_75_ok - .
percentiles_75_fail 40| [| H
percentiles 95_ok [lHlNETHEEEEE B I
percentiles_95 fail -
percentiles 99 ok | [[[0 N AN EEEEEE
percentiles 99 fail 710 1 (i e O O Y e ———
- - B - -R =N - - A T
g 2l s B SES S E L SESESESESESESESE
SR B ES 8N lm o E U RN e
'y EEpfh T~ EEEEEES S LM~ TO TS
oD 2 h._._._l_PEHmmlmmlmmlmml
E F = Byl s 2 HLDLE L
B 2g - EcsE5c50f8 B ESELE
E E R cea2ap2 g ioigiaie
E 5 sl 0l B EE R
& B T EToxETxc = L & 3 &
; EEETE; s
2 Egg w
2
E
2

Figure 7.45: Correalation heatmap.

By looking at heatmap 7.45, we see a few interesting correlations, first for replicas and
number of handled requets and memory and mena responresponse, as we have been guessing
until now. On the other hand, process power and cores aparently do not have so much
influencce on all its results, but the problem here is that our dataset is limited from 1 to
100 simultaneous users. if we compare previous 7.32from basic caching, we see cores have
less impact on response times, but there is almost the same influence on total requests, as
we have already mentioned.

Chapter 8

Conclusion

We have already concluded all our experiments and wet extensively thought all of them.
The raw data and the Jupyter notebook, which produce these experiments, are available to
download in the appendix A. To organize the ideas behind this study and what we have
accomplished so far, we will recapitulate the most important parts and how they correlate
to each other.

We started our research by understanding why performance is important and why we
should care about our application’s response time. Next, we jumped into fastness scales and
how fast is fast enough, and what is a good response time. Then we started studying defenses
between architectures for deploying a web application based off Rails; it was using Ansible
script and a monolithic server against using a Kubernetes approach with horizontally scalable
cluster, where we discussed the benefits of using Kubernetes against its main disadvantage,
which is losing performance but gain scalability.

Talking about how fast is fast enough and response time, it is important to recall our
standards. Our research stated that an acceptable mean response time would be 3000ms,
and a gold standard would be 1500ms. We have discussed that we would be handling 95%
of the requests and would not care about the appeared response time ad would not use the
Ajax method to give an impression to the user that our response time is lower; we measured
real response time and page loads.

Our workload test environment was composed of a couple of variables. The number of
cores, RAM amount, replicas set, talking about cluster parameters. We ran load tests using
Gatling to stress those variables, which ran ramp users access during 1, 10, and 60 seconds
for batches or 1 to 2000 simultaneous users in intervals of 25 users each. We used a couple
of scripts in Scala, Bash Shell, and NodeJS, and the help of Gatling software. Our tests
consisted of tweaking these parameters in cluster size and load test payload. Our goal is to
use cache solutions such as Redis to increase our performance time to keep inside our golden
standard of 1500ms, but 3000ms is still acceptable.

To maintain a comparison base and understand which kind of stress our software would
encounter, we had to do a simple analysis of Brazil’s population. Recalling what we have
studied about our country city populations and governmental web portals access data, we
could estimate an average expected access load. Our study has shown us that Sao Paulo’s
platforms, Governo Aberto! had received at its peak access, 30000 users during November
of 2019, but averaging 1500 users each month. On the other hand, the federal website for
retrieving population’s data, Portal Brasileiro de dados Abertos?, received at its peak 12000
users in July of 2016. Now that the reader had remembered our goal, the standard we set

Yhttp: //www.governoaberto.sp.gov.br/
Zhttp://dados.gov.br/

73

http://www.governoaberto.sp.gov.br/
http://dados.gov.br/

74 CONCLUSION 8.0

to achieve, and comparison bases on Brazil data access portals data, let us jump into the
results.

Our statistical analysis starts by looking at Consul original code implementation but
deploys through a Kubernetes stack instead of a normal monolithic virtual server. We deploy
that code using the provided Docker image but with our own implementation of Kubernetes
architecture. With our simulated cluster ready and our stack deploy to Kubernetes, we ran
our tests using bash and Scala scripts using Gatling. Then parse generated results using
other NodeJS scripts, which gave us a CSV file to summarize. The readers can find out on
our repository to simulate for their own.

By analyzing the results, we have understood that Consul, as a Ruby on Rails appli-
cations, dramatically relies on the replica set and the memory for performance, with cores
playing a smaller role but still needed to increases performance, but not throttling our sim-
ulated cluster capabilities. On the other hand, increasing the replica set also increases our
cluster’s memory usage, which leads us to memory being the main responsible for lowering
the mean response time, thus increasing our cluster performance.

Jumping into the numbers, we saw that the original code was able to handle the requests
with just a small margin above our golden standard of 1500ms with an average mean response
time of 2000ms for 100 simultaneous users but 500ms for cached pages loaded directly from
the file system and just around 2500ms for 2000 users. It is also important to remember
that most of our requests were clustered around 1500ms ranging all users intervals. But
what is important is to pay attention to all plot shapes; all histograms remember a Normal
distribution, where it starts with a small and increases to its peak, and then the curve
smoothly decreases.

Caching translations, session data, GETs, and HEADs requests allowed us to handle 95%
of the requests within our golden standard or 3000ms. But not only that, in better scenarios,
we were able to lower our response time by half, allowing page loads of 500ms. If we were to
talk about handled requests, our numbers jumped to almost 100%, excluding outliers due
to network problems. On higher simulations, with like 3000 or 5000 simultaneous users, the
numbers dropped slightly, but we were able to handle 75% of the requests within a page load
time of, as low as, 500ms. Caching allows us to delivery speedy page loads; the problem is
that we start to throttle with process power to handle all open connections to our machine.

The proposed improvements were all about caching and if it was worth increasing com-
plexity to increase performance. To do so, we divided our tests into two groups; first, we
analysis simple caching, just leaving Rails to cache what it "thought" was important and
caching translations. We jumped into the caching page and partials to identify if perfor-
mance increases and if it is worth the performance difference due to managing cache state
on small pieces of code updates. It is also important to keep in mind that our research has
shown us that cache is one of the main causes of bugs in enterprise level applications.

We did pretty much the same stress tests for the original consul code, one batch for
simple cache strategy and another for the advanced caching. First, looking at our plotted
results, we saw that there were not too many improvements to our application level. We
saw improvements for handling 100% of the requests on 100 simultaneous users. The plots
became more stables, but we did not see much improvement in the average mean response
time; the stability came from a smaller standard deviation on the cache version than the
original code.

The results discussed above are what we expected from our research. Cache helps out
by eliminating some access the Rails application does to the database. This shows us that
cache is an important ally in a situation with small resources. It is crucial to leave some of
the resources for a cache server. It will dramatically improve your application. The other

75

scenario is where you have huge amounts of simultaneous users on your applications and
problems like store session data. It can dramatically improve by leaving those access to the
cache instead of a regular SQL database.

On advanced caching problems, the benefits are even less worth it. If you are managing
huge enterprise-level applications with thousands of simultaneous user access and a team to
maintain your application, you will benefit from advanced caching. Our analysis has shown
us no significant improvements when compared to the basic caching scenario. If we keep
in mind that advanced caching is one of the main sources of bugs on the enterprise-level
application, when can infer that caching page, partials, query results all over the code to
decrease even more the database access and lower our resources is not worth the work you
will have to spend on those upgrades, unless you are managing high traffic servers.

Keeping it simple, if you are low on resources, or if you are managing enterprise-level
applications which does not have much traffic, it is important to keep caching on a basic level.
Let automated caching utilities do the job, do not write "cache code" on your application, and
already see improvements on your application. The other scenario is managing an application
with 5000, 10000, or even more simultaneous users, which heavy load on databases servers.
In this scenario, you must use advance caching to relieve as much query’s to the SQL
databases, like PostgresSQL, as possible, as querying databases is significantly slower than
access caching databases like Redis.

Utilities like actionpack-page caching gem?, which automatic caches all GETs and HEADs
requests, or automatic caching utilities given by rails itself like translations for i18n, or ses-
sion data caching are the best utilities to improve your web application without increasing
complexity. If you are interested in small advancements, the reader might want to try caching
partials and query results for simple queries for heavily accessed pages, which could relieve
database access and process power needed. Still, it is vital to keep caching simply. Advanced
caching, for complex requests and actions, is dangerous because it could lead your develop-
ment team to spend more time-solving bugs caused by the cache, improving your application,
or solving all other bugs and issues that are already on the road-map.

Finally, it is also important to understand how you will build your Kubernetes architec-
ture. For example, our experiments have shown us that one Postgres database instance could
handle just a fine 5000 requests simultaneously, so, probably, you would want to use 2 or
more instances or your Rails application to connect to the same Postgres database. Another
interesting understanding is how you will build your Redis cluster and your Rails replicas
connected to the same cluster. For example, how much data are you storing, how many Redis
instances would satisfy your Rails cluster’s needs? You should not build a Kubernetes cluster
with 1-1-1 instances, 1 rails replicas for 1 Postgres replica, and 1 Redis replica. To maintain
instability, we have seen that it is important to keep a Redis cluster of at least 5 nodes for
replicas and master-slave behavior, and, as Redis is using LRU strategy, if you leave small
amounts of memory available for caching, you will experience a huge amount of page faults,
due to caching being constantly swapped, which will leave on the worst performance then it
was without caching.

Think about the replica set; it is better to leave Kubernetes to manage the replica set;
you should leave threshold based on CPU and memory for when the container reaches 75%
of CPU usage or 75% of memory usage it should escalate the replica set, then if the memory
of CPU is as low as 25% the cluster should decrease the replica set. To take advantage of
horizontal escalators’ full potential, you should use a host solution that proved automatic
cluster management that can add or remove machines to your cluster, allowing Kubernetes
to increase its power even more or decrease your costs application as needed.

3https://github.com /rails/actionpack-page caching

https://github.com/rails/actionpack-page_caching

Appendix A

Code used for this simulation

Repository with insignts for Consul’s performance improvements:
https://gitlab.com/Ibenicio/consul

Repository with scripts for simulation automation:
https://gitlab.com /lbenicio/consul-tests

Repository with raw data generated on this study:
https://gitlab.com/Ibenicio/consul-tests-raw-data

Consul original source code:
https://github.com/consul/consul

The tests and scripts were developed on debian as host OS.

Docker:
https://docs.docker.com /engine /install /ubuntu/

Minikube:
https:/ /kubernetes.io/docs/tasks/tools/install-minikube/

Java:
https://launchpad.net/ linuxuprising/+archive/ubuntu/java/-+packages

Gatling Load Test Tool:
https://gatling.io/open-source/

77

Bibliography

Barber() Scott Barber. How fast does a website need to be? Mention on page. 4

Barua() Hrishikesh Barua. A comparison of some container orchestration option. Mention on
page. 11

Cassandra() Cassandra. https://cassandra.apache.org/. Mention on page. 45
CauchBase() CauchBase. https://www.couchbase.com/. Mention on page. 45

Chen et al.() Shanshan Chen, Xiaoxin Tang, Hongwei Wang, Han Zhao and Minyi Guo.
Towards scalable and reliable in-memory storage system: A case study with redis. Mention
on page. 46, 47, 48

Chinnachamy() Arun Chinnachamy. Instant redis optimization how to. Mention on page. 45
Corona() Blue Corona. How fast should a website load? Mention on page. 2, 3
Cruz() Ryan Joshua Dela Cruz. Why website speed is very important? Mention on page. 4

dhh() dhh. Rails 5.2.0 final: Active storage, redis cache store, http/2 early hints, csp,
credentials. Mention on page. 47

Doyle() Kyle Doyle. Gatling vs jmeter vs the grinder: Comparing load test tools. Mention on
page. 20

EngingTang, and Fan() EnqingTang and Yushun Fan. Performance comparison between
five nosql databases. Mention on page. 45

Fernando Maila-Mailal, and Ibarra-Fiallo() Monserrate Intriago-Pazminol Fernando
Maila-Mailal and Julio Ibarra-Fiallo. Evaluation of open source software for testing per-
formance of web application. Mention on page. 20, 21

Gilbert, and Linch() Seth Gilbert and Nancy Linch. Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services. Mention on page. 45

Gupta et al.() Adity Gupta, Swati Tyagi, Nupur Panwar, Shelly Sachdeva and Upaang
Saxena. Nosql databases: Critical analysis and comparison. Mention on page. 45, 46

HBase() HBase. https://hbase.apache.org/. Mention on page. 45

Ina Schieferdeckerl, and Apostolidis() George Din Ina Schieferdeckerl and Dimitrios
Apostolidis. Distributed functional and load tests forweb services. Mention on page. 15

Jiang et al.() Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann and Parminder Flora.
Automated performance analysis of load tests. Mention on page. 15

79

80 BIBLIOGRAPHY

Khan, and Amjad() SRijwan Khan and Mohd Amjad. Performance testing (load) of web
applications based on test case management. Mention on page. 15

Loisel() Jérome Loisel. Jmeter vs gatling tool. Mention on page. 20

Lonn() Ragnar Lonn. Open source load testing tool review 2020. Mention on page. 19, 20, 21,
22,23

Macedo, and Oliveira() Thiao Macedo and Fred Oliveira. Redis cookbook. Mention on page.
47

Malavolta et al.() Ivano Malavolta, Katerina Chinnappan, Lukas Jasmontas, Sarthak
Gupta and Kaveh Ali Karam Soltany. Evaluating the impact of caching on the energy
consumption and performance of progressive web apps. Mention on page. 47

Memcached() Memcached. https://www.memcached.org/. Mention on page. 45
Menascé() Daniel A. Menascé. Load testing of web sites. Mention on page. 15

Mercl, and Pavlik() Lubos Mercl and Jakub Pavlik. The comparison of container orches-
trators. Mention on page. 11

Mertz, and Nunes() Jhonny Mertz and Ingrid Nunes. A qualitative study of application-
level Caching. Mention on page. 46, 47

MongoDB() MongoDB. https://www.mongodb.com/. Mention on page. 45

Mookerjee, and Tan() Vijay S. Mookerjee and Yong Tan. Analysis of a least recently
used cache management policy for web browsers. Mention on page. 48

Pazl, and Bernardino() Solange Pazl and Jorge Bernardino. Comparative analysis of
web platform assessment tools. Mention on page. 15, 22

Postgres() Postgres. https://www.postgresql.org/. Mention on page. 46

Pradeep, and Sharma() S. Pradeep and Yogesh Kumar Sharma. A pragmatic evaluation
of stress and performance testing technologies for web based applications. Mention on page.
14, 20

Proskurin() Andrei Proskurin. Adapting a stress testing framework to a multimodule
security-oriented spring application. Mention on page. 14, 15, 23

Redis() Redis. httpS//l"GdlSlO/ Mention on page. 45, 46, 47, 48, 49, 55
Rlak() Riak. https://ria,k.com/. Mention on page. 45

Selvidge() Paula Selvidge. How long is too long to wait for a website to load? Mention on page.
3,4,5

Sundbaum() Niklas Sundbaum. Automated verification of load test results in a continuous
delivery deployment pipeline. Mention on page. 13, 14

Takai et al.() Osvaldo Kotaro Takai, Isabel Cristina Italiano and Jodao Eduardo Ferreira.
IntroduCAo a banco de dados. Mention on page. 46

Walton() Philip Walton. User-centric performance metrics. Mention on page. 3

BIBLIOGRAPHY 81

Zhen Ming Jiang, and Flora() Gilbert Hamann Zhen Ming Jiang, Ahmed E. Hassan
and Parminder Flora. Automatic identification of load testing problems. Mention on page. 15

	Introduction
	Motivation
	Why should we care about load time?
	How fast is fast enough?

	Background
	What is Consul?
	Why use containers?
	Containers software
	What is Kubernetes

	Methodology and Experiments
	What do we hope to achieve?
	Types of tests
	Example of workloads
	Tests scripts
	Parser script

	Load Test Software and tools
	Technical features
	User Experience
	Performance
	Gatling

	An analysis of Brazil's population
	Motivation
	Population analysis
	São Paulo's Governo Aberto analysis

	An analysis of Consul's original code
	Host machine and OS specification
	Tests methodology
	Get to know the data
	Exploratory analysis
	2 cores and 9000MB RAM
	4 cores and 9000MB RAM
	8 cores and 9000MB RAM
	8 cores and 16000MB RAM
	8 cores and 26000MB RAM
	Tests analysis

	Proposed improvements
	Strategy to decrease page load time
	Tests methodology and enhancements proposal
	Explanatory analysis - Simple caching
	2 cores and 8000MB RAM
	4 cores and 8000MB RAM
	8 cores and 8000MB RAM
	8 cores and 16000MB RAM
	8 cores and 26000MB RAM
	Test analysis

	Explanatory analysis - Advanced caching
	2 cores and 8000MB RAM
	4 cores and 8000MB RAM
	8 cores and 8000MB RAM
	8 cores and 16000MB RAM
	8 cores and 26000MB RAM
	Test analysis

	Conclusion
	Code used for this simulation
	Bibliography

