

Improving Parallelism on
Git
Capstone Project Proposal - MAC0499 at IME-USP, 2019

Student ​Matheus Tavares Bernardino
Advisor ​Alfredo Goldman

About Git
Git is one of the most popular distributed version control systems, supporting the

development of many FLOSS and proprietary software today. It was created in 2005 with
the purpose of versioning no less than the Linux Kernel. Soon after, it achieved even
greater extent thought platforms such as github and gitlab.

The project
As direct as possible, the goal with this capstone project is to ​make more of Git’s

codebase thread-safe ​and​ improve parallelism in some commands​. More specifically,
the non-thread-safe section I plan to be working on is the pack access code. Among other
possibilities making this section thread-safe will provide means to improve git-grep’s
parallelism and to introduce threading to git-blame, which are my final goals.

The motivation behind this are the complaints from developers experiencing slow
Git commands when working with large repositories , such as chromium and Android. And 1

since nowadays, most personal computers have multi-core CPUs, it is a natural step trying
to improve parallel support so that we can better use the available resources.

1 Some of them can be seen here:
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-dev/oYe69KzyG_U
https://bugs.chromium.org/p/git/issues/detail?id=18
https://bugs.chromium.org/p/git/issues/detail?id=16
https://code.fb.com/core-data/scaling-mercurial-at-facebook/
https://public-inbox.org/git/CA+TurHgyUK5sfCKrK+3xY8AeOg0t66vEvFxX=JiA9wXww7eZXQ@mail.gmail.c
om/
https://public-inbox.org/git/20140213014229.GE4582@vauxhall.crustytoothpaste.net/
https://public-inbox.org/git/CACBZZX6A+35wGBYAYj7E9d4XwLby21TLbTh-zRX+fkSt_e2zeg@mail.gmail.co
m/

https://groups.google.com/a/chromium.org/forum/#!topic/chromium-dev/oYe69KzyG_U
https://bugs.chromium.org/p/git/issues/detail?id=18&q=
https://bugs.chromium.org/p/git/issues/detail?id=16
https://code.fb.com/core-data/scaling-mercurial-at-facebook/
https://public-inbox.org/git/CA+TurHgyUK5sfCKrK+3xY8AeOg0t66vEvFxX=JiA9wXww7eZXQ@mail.gmail.com/
https://public-inbox.org/git/CA+TurHgyUK5sfCKrK+3xY8AeOg0t66vEvFxX=JiA9wXww7eZXQ@mail.gmail.com/
https://public-inbox.org/git/20140213014229.GE4582@vauxhall.crustytoothpaste.net/
https://public-inbox.org/git/CACBZZX6A+35wGBYAYj7E9d4XwLby21TLbTh-zRX+fkSt_e2zeg@mail.gmail.com/
https://public-inbox.org/git/CACBZZX6A+35wGBYAYj7E9d4XwLby21TLbTh-zRX+fkSt_e2zeg@mail.gmail.com/

With this in mind, pack access code is a good target for improvement, since it’s used
by many Git commands (e.g., checkout, grep, blame, diff, log, etc.). This section of the
codebase is still sequential and has many global states, which should be made local,
removed or protected before we can work to improve parallelism. And after we have that,
git-grep and git-blame are two natural choices to take benefit from it:

● git-grep is already parallel and it shouldn’t be hard to refactor its critical sections to
use more fine-grained locks, taking advantage of the thread-safe pack access.

● git-blame is sequential and its performance is a big issue for developers at large
repositories. Besides that, it seems to have great independence between its main
tasks, which make them very good to be run in parallel.

The Pack Access Code

To better describe what the pack access code is, we must talk about Git’s object
storage (in a simplified way): Besides what are called ​loose object​ ​files​, Git has a very
optimized mechanism to compactly store objects (blobs, trees, commits, etc.) in packfiles . 2

These files are created by : 3

1. listing objects;
2. sorting the list with some good heuristics;
3. traversing the list with a sliding window to find similar objects in the window, in

order to do delta decomposing;
4. compress the objects with zlib and write them to the packfile.

What we are calling ​pack access code​ in this document, is the set of functions
responsible for retrieving the objects stored at the packfiles. This process consists, roughly
speaking, in three parts:

1. Locate and read the blob from packfile, using the index file;
2. If the blob is a delta, locate and read the base object to apply the delta on top of it;
3. Once the full content is read, decompress it (using zlib inflate).

Note:​ There is a delta-base cache for the second step so that if another delta depends on the
same base object, it is already in memory. This cache is global.

Note 2:​ When reading from the packfile, Git uses windows to map regions of the packfile into
memory for better performance. (Do not confuse these with the windows used when ​writing​ to
packfiles). These windows are global per packfile and all packfile attributes are hold by a global
variable named “the_repository”.

2 ​https://git-scm.com/book/en/v2/Git-Internals-Packfiles
3 ​https://github.com/git/git/blob/master/Documentation/technical/pack-heuristics.txt

https://git-scm.com/book/en/v2/Git-Internals-Packfiles
https://github.com/git/git/blob/master/Documentation/technical/pack-heuristics.txt

If the previously shown steps were thread-safe, the ability to perform the delta
reconstruction (together with the delta-base cache lookup) and zlib inflation in parallel
could bring a good speedup. At git-blame, for example, 24% of the time is spent in the call 4

stack originated at ​read_object_file_extended.​ Not only this but once we have this big
section of the codebase thread-safe, we can work to parallelize even more work at higher
levels of the call stack.

Plan
To make pack access thread-safe, I will probably be working mainly with ​packfile.c​,

sha1-file.c​, ​object-store.h, object.c​ and ​pack.h​ (however, I may also need to tackle other files).
I will be focusing on the following three pack access call chains (which are not thread-safe
yet), found in git-grep and/or git-blame:

read_object_file → repo_read_object_file → read_object_file_extended → read_object →
oid_object_info_extended → find_pack_entry → fill_pack_entry → find_pack_entry_one →
bsearch_pack ​and​ nth_packed_object_offset

oid_object_info → oid_object_info_extended → <same as previous>

read_object_with_reference → read_object_file → <same as previous>

To accomplish thread-safety, some of the point I will have to work on are:

● Protect ​packfile.c​ global variables such as ​pack_open_windows​ and ​pack_open_fds​,
which are read and updated in sections that must be thread-safety.

● Just like the previous item, protect ​sha1-file.c​ global states such as the ​cached_objects
array used by read_object_file(). This cache is intended to hold a small number of
objects in memory pretending that they are available at the object storage but not
really writing them to disk.

● Protect operations on the delta-base cache. Here we should study whether to add
mutexes to the cache itself or to the underlying hashmap. There are advantages and
disadvantages in both cases, so it should still be discussed with the community. A
third option would be to try making the cache thread-local. But this could perform
badly since some objects may be in one thread’s cache but not the other’s. And
memory usage would increase because of duplicate information.

4 With gprof and gprof2dot I generated the following image: ​https://i.imgur.com/XmyJMuE.png​; which
shows some of the most time consuming functions when git-blame is invoked. The call stack originate at
read_object_file_extended() is responsible for pack access and consumes 24% of the total execution time.

https://i.imgur.com/XmyJMuE.png

● Make sure tests cover functions I’ll be working on and refactor/add tests as needed.

After that is done, the focus will be on git-grep and git-blame, going thought the
following:

● Refactor the critical sections at git-grep to use more fine-grained mutexes, taking
advantage of the now thread-safe pack access. This will hopefully increase git-grep
performance, especially in large repositories.

● Check other mutex protected functions git-grep uses, not related with pack access,
to see if we can implement a more fined-grained parallelism there. This functions
are:​ fill_textconv, is_submodule_active, repo_submodule_init, repo_read_gitmodules ​and
add_to_alternates_memory.

● Once pack access is thread-safe, ensure xdiff code used by git-blame has
thread-safety. I expect this to be easier.

● Add threads to git-blame. This step should be well discussed with the community
when we get to the point of implementing it, to figure out what is the best way to do
it. We could work a producer-consumer mechanism at blame.c’s assign_blame()
function, for a very good work sharing assignment (90% of git-blame’s time is spent
here). Or try threading at lower functions on the call stack that still uses a lot of 5

execution time such as the libxdiff ones.

Schedule
Here is an approximated schedule:

Period Main Task Side Tasks

February to April Community bounding and
study pack access code

● Get to know the community
and send first contributions
[done]

● Study the project and
discuss ideas with the
community [done]

● Trace pack access call chain
used by git commands like
blame and checkout.
[partially done]

● Gather information of
global states.

May Work on sha1-file.c global
states and begin monograph

● Protect object cache at
sha1-file.c.

● Work on other sha1-file.c

5 ​https://i.imgur.com/XmyJMuE.png

https://i.imgur.com/XmyJMuE.png

global states and
non-thread-safe functions.

● Start writting the
monograph with all I’ve
already done and studied

June Work on packfile windows and
other packfile.c global states

● Protect access to the
windows used to map
packfiles’ regions into
memory.

● Protect packfile.c global
states (​pack_open_windows​,
pack_open_fds​ and etc.) and
work on its non-protected
functions.

July Work on delta-base cache ● Conclude work on packfile
windows.

● Protect delta-base cache
operations.

August Work on git-grep ● Use more fine-grained
mutexes

● Check other git-grep locks
that do not call pack access
functions and try to make
them more fine-grained
too.

September Prepare the ground for a
threaded git-blame

● Check xdiff code for
non-thread-safe operations
and make them safe

● Profile git-blame and study
how to introduce threading
to it. Also discuss the ideas
with the community.

● Start working on parallel
git-blame

October Work on git-blame ● Finish work on parallel
git-blame

November Work on any leftovers and
monograph

This time will be reserved to finish
any leftovers from the previous
periods and conclude my
monograph

Progress so far

Community Bounding

I started to learn more about the Git community in February, among other things,
reading about ​Git internals at the Git Pro book​ and the development process at the ​project
documentation​. I also joined the community on Git’s mailing list and IRC channel and began
to follow up some of the conversations happening on these media. Since then, I’ve already
studied a few sections of the codebase and sent the following patches:

Patch Status

clone: test for our behavior on odd objects/* content v5 sent for review

clone: better handle symlinked files at .git/objects/ v5 sent for review

dir-iterator: add flags parameter to dir_iterator_begin v5 sent for review

clone: copy hidden paths at local clone v5 sent for review

clone: extract function from copy_or_link_directory v5 sent for review

clone: use dir-iterator to avoid explicit dir traversal v5 sent for review

clone: Replace strcmp by fspathcmp v5 sent for review

And three more patches for ​git.github.io​:

Patch Status

rn-50: Add git-send-email links to light readings Merged

SoC-2019-Microprojects: Remove git-credential-cache Merged

SoC-2019-Microprojects: Remove all trailing spaces Merged

The parallelism project

For some weeks now I have been studying and discussing with the community the
ideas presented here to improve Git's parallelism. The community helped me a lot to
mature my initial ideas and to think even further.

I also plan to to participate in GSoC (Google Summer of Code), which is a program
aimed to bring more students to open source development. I’ve already submitted the
initial phase of this project as my proposal for the program. So if I get approved, I will be
working on making pack access thread-safe for GSoC.

Here are some threads on Git’s mailing list where I started discussing my project:

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain
https://github.com/git/git/tree/master/Documentation
https://github.com/git/git/tree/master/Documentation
https://public-inbox.org/git/20190330224907.3277-2-matheus.bernardino@usp.br/
https://public-inbox.org/git/20190330224907.3277-3-matheus.bernardino@usp.br/
https://public-inbox.org/git/20190330224907.3277-4-matheus.bernardino@usp.br/
https://public-inbox.org/git/20190330224907.3277-5-matheus.bernardino@usp.br/
https://public-inbox.org/git/20190330224907.3277-6-matheus.bernardino@usp.br/
https://public-inbox.org/git/20190330224907.3277-7-matheus.bernardino@usp.br/
https://public-inbox.org/git/20190330224907.3277-8-matheus.bernardino@usp.br/
https://github.com/git/git.github.io
https://github.com/git/git.github.io/pull/374/commits/026b6705a606dc85bec66f62a05d005761d9d80c
https://github.com/git/git.github.io/pull/357/commits/8601a451054f2c6e718064bf87a5f5414b1af52f
https://github.com/git/git.github.io/pull/357/commits/1cb79d6b88a31cdedd94d0977dcf98e21104e3c1

● https://public-inbox.org/git/CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-F
nGR00dU8iaoc+b8=Q@mail.gmail.com/

● https://public-inbox.org/git/20190402005245.4983-1-matheus.bernar
dino@usp.br/

● https://public-inbox.org/git/CAHd-oW7KMrDJ-cyzk63oqW9-QVpag6fKn
Dp+Mo5bWxg1KfzY3g@mail.gmail.com/

And also a conversation I had at the cromium mailing list to better understand their
issues with Git in terms of performance:
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-dev/oYe69KzyG_U

https://public-inbox.org/git/CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-FnGR00dU8iaoc+b8=Q@mail.gmail.com/
https://public-inbox.org/git/CAHd-oW7onvn4ugEjXzAX_OSVEfCboH3-FnGR00dU8iaoc+b8=Q@mail.gmail.com/
https://public-inbox.org/git/20190402005245.4983-1-matheus.bernardino@usp.br/#t
https://public-inbox.org/git/20190402005245.4983-1-matheus.bernardino@usp.br/#t
https://public-inbox.org/git/CAHd-oW7KMrDJ-cyzk63oqW9-QVpag6fKnDp+Mo5bWxg1KfzY3g@mail.gmail.com/
https://public-inbox.org/git/CAHd-oW7KMrDJ-cyzk63oqW9-QVpag6fKnDp+Mo5bWxg1KfzY3g@mail.gmail.com/
https://groups.google.com/a/chromium.org/forum/#!topic/chromium-dev/oYe69KzyG_U

