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((@/ Motivation and Objectives

In the model building process hyperparameter tuning
can take a long time, even with the available

optimization procedures.
Using LightGBM algorithm, this study objectives are:

» How hyperparameters affect the performance?

» How different characteristics of a dataset affect
the hyperparameter impact?

» How the performance metrics of classification
metrics behave?
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| |WHAT Is GBM?
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Additive ensemble model

Multiple estimators (shallow
trees)

Sequential procedure: each new
learner corrects the last one:

Fn(X) = Fip—1(X) + nAn(X)

XGBoost and LightGBM

- Boosted prediction
= True function




GBM HYPERPARAMETERS
Three LightGBM hyperparameters considered:

> num_estimators — the total number of boosting
iterations, i.e. the total number of trees.

> max_depth — maximum depth each estimator can
have;

» learning_rate — the weightof each new
estimator;
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TOOLS AND DATASETS '

DATASETS pgthOﬂ TM

> OpenML Platform;

> Binary classification; fl(leafnx

> Filters for consistency (e.g. Microsoft
minimum of 1000 LightGBM .
samples); _ o

» 70 datasets. pl ng{)u N

./ ~
@‘ SciPy



DATASET’S DESCRIPTIVE STATISTICS

> To categorize similar datasets, some specific
characteristics were calculated for each one.

» These characteristics include the number of
total features, categorical features,
cardinality, skewness, etc.

> After the experiment, similar datasets were
analyzed together according to their
characteristics.




HYPERPARAMETER SPACE

Hyperparameters values depend on the dataset
size;

Specific rules to generate hyperparameter values;

Each one has a set of values that will be tested in
the experiment.
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Different learning_rate distributions




HYPERPARAMETER SPACE

num_estimators

num_estimators
X
max_depth

max_depth

num_estimators
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learning_rate
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max_depth
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MODEL PERFORMANCE METRICS

» AUC — Area Under the ROC curve, measures the
model ordering capacity;

» Logloss — Logarithmic Loss, measures the
probability accuracy;

1 <& . . . .
_ (4) ~ (%) _ @) _ (@)
Logloss N;:lﬁ[y log 9" + (1 — y*") log(1 — g'*)]

> Brier Score — Mean Squared difference between
the predictions and actual labels:
1 <& . .
er — — 5@ _ 4, (0)2
Brier n;(y y\)



FINAL
STUDY
PIPELINE

For each dataset:
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il DATASETS CLUSTERING

» Each dataset experiment results has multiple
metrics;

> The experiments were aggregated with
K-means using the characteristics of its

features and the descriptive statistics:
>  Num_rows, num_features, mean_skewness,
mean_variance, num_categorical,
sum_cardinality_over_categorical,
categorical_ratio, numeric_ratio,
boolean_ratio, constant_ratio




il DATASETS CLUSTERING

t-SNE projection - Clusters and centroids
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Figure 5.11: t-SNE projection with the assigned clusters and the centroids



il DATASETS CLUSTERING




il STATISTICAL ANALYSIS

To measure hyperparameter sensitivity, the
performance metrics were converted to a relative
change from baseline metric;

In experimental analysis terminology:

>  The hyperparameter values are the treatment
levels;

The metrics are the observed outcomes;
Each dataset is an experimental unit;

S(C 777Q » TN )

Nonparametric analysis of variance;

>

>

>




ulli STATISTICAL ANALYSIS
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RESULTS AND
CONCLUSION
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M SINGLE-FACTOR MODELS

> A Kruskal-Wallis one-way analysis of variance

test was applied to every experiment;
» Statistically significant experiments were used to
calculate a single-factor effects model:

Yij = B+ Ti + €ij

» The treatment effects are interpreted as the effect a
single hyperparameter value has on a metric;
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Statistical test results for all experimental scenarios




o EFFECT BY HYPERPARAMETER

COMBINATION
Metric
6AU C 5Brier 5Logloss
Combinations
Individual 22.2% 22.2% 38.8%
Pair 38.8% 55.5% 50%
Triple 66.6% 66.6% 66.6%

Table 6.2: Percentage of statistically significant results for each comparison and metric



M EFFECT BY HYPERPARAMETER

Single-factor model - auc_evaluator__target
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Figure 6.6: SFM plot for S(Cs, 1\, AUC)




ot EFFECT BY HYPERPARAMETER

Single-factor model - brier_score_evaluator__target
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Figure 6.13: SFM plot for S(Cl,ng}{, N> Brier)




M EFFECT BY CLUSTER AND METRICS

Cluster
1 2 3 4 5 6
Metric

dauc 428% 571% 28.5% 0.0% 57.1% 42.8%
] 571% 571% 14.2% 42.8% 71.4% 14.2%
OLogloss | 71.4% 85.7% 0.0% 42.8% 71.4% 14.2%

Overall | 57.1% 66.6% 14.2% 28.5% 66.6% 23.8%

Table 6.3: Percentage of statistically significant results in each cluster, by metric

dAUuC  OBrier 5Logl 088

38.1% 42.7% 47.6%

Table 6.4: Percentage of statistically significant results of each metric



Thanks!

The full thesis with all details and results is available at:
https://linux.ime.usp.br/~robotenique/mac0499/full_tcc.pdf

27



