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Abstract

This work investigates the use of Deep Learning techniques to detect galaxy mergers
using astronomical imaging data from photometric surveys. We analyse three Convolutional
Neural Networks architectures found in the literature and compare their performances train-
ing from scratch and using transfer learning. The models outperformed previous automatic
detection methods and transfer learning showed a slightly better performance over training
from scratch. A reliable approach to detect galaxy mergers is presented with different models
achieving a precision of 0.97 on the dataset used.

Keywords: deep learning, galaxy mergers, convolutional neural networks.
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Resumo

Este trabalho investigata o uso de técnicas de Aprendizagem Profunda (Deep Learning)
para detectar fusões de galáxias usando dados de imagens astronômicas de levantamentos fo-
tométricos. São analisadas três arquiteturas de Redes Neurais Convolucionais encontradas na
literatura e comparamos seus desempenhos treinando do zero e usando transfer learning. Os
modelos demonstraram desempenho superior a métodos anteriores de detecção automática e
transfer learning mostrou um desempenho ligeiramente melhor do que treinar do zero. Uma
abordagem confiável para detectar fusões de galáxias é apresentada com diferentes modelos
atingindo uma precisão de 0,97 com o conjunto de dados utilizado.

Palavras-chave: aprendizagem profunda, fusões de galáxias, redes neurais convolucionais.
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Chapter 1

Introduction

In astronomy, the phenomena of gravitational interaction between galaxies is called a
galaxy merger, which happens when at least two galaxies get very close to each other. The
study of merging galaxies is important because astronomers can use the merger rate as a
measurement of galaxy evolution (Lotz et al., 2004) as well as study the transformation of
massive galaxies (Toomre and Toomre, 1972) and the triggering of quasars (Lin et al., 2008).
In this work, we study how Convolutional Neural Networks can be used to detect merging
galaxies, based on image data from photometric surveys, which can enable astronomers to
look for galaxy mergers in larger datasets.

1.1 Objectives

The main goal of this work is to investigate the use of Deep Learning techniques, partic-
ularly Convolutional Neural Networks (CNN), to detect galaxy mergers using astronomical
imaging data from photometric surveys. We compare three image classification models found
in the literature and use two different training setups, namely training from scratch and
transfer learning, i.e., using a pre-trained model as a starting point for the training process,
and we compare our results to the ones obtained by a recent work by Ackermann et al.
(2018), which obtained good results by using transfer learning. To enable this comparison,
we used the same dataset as Ackermann et al. (2018) in all experiments.

1.2 Contributions

The main contribution of this study is to present a systematic comparison of differ-
ent Deep Learning models applied to galaxy merger detection, expanding on the work
of Ackermann et al. (2018). We present results on how different architectures perform on
the selected problem, and we believe this work could be of great use to the astronomical
community interested in the detection of galaxy mergers.
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2 INTRODUCTION 1.3

1.3 Organization

The text is organized as follows: in Chapter 2 we present a brief overview of Neural Net-
works, Gradient Descent and Convolutional Neural Networks, alongside a basic exposition
of astronomy concepts, such as spectrometry, photometry, galaxy morphology and interac-
tions. In Chapter 3 we present the experimental setup and dataset used. In Chapter 4 we
present and discuss the results of the different experiments, and compare them with the
results obtained by others. Chapter 5 concludes this work.



Chapter 2

Background

2.1 Astronomy

2.1.1 Galaxy Morphology

Astronomers divide galaxies into groups based on their visual appearance, and the first
widely adopted system for galaxy morphological classification was proposed by Hubble
(1926) and is known today as the Hubble Sequence, in which galaxies are roughly divided
into three main groups: elliptical, spiral and lenticular galaxies. Often galaxies that do not
fit in any of those groups are called irregular. When two galaxies come close together, they
start interacting with each other due to gravitational pull and this effect is called a galaxy
merger. Since galaxies are extremely large and there is a lot of empty space between the
stars, there is a low probability of star systems colliding with each other, and during the
merging process it is mainly the gas and dust of the galaxies that come together and form
tidal tails and emit a lot of light.

As detailed by Karttunen et al. (2016), in early stages of the Universe, galaxies used to
be much closer to each other and interactions between them must have been much more
common. This is why there are good reasons to believe that bright giant elliptical galaxies
may have been formed by the merger of other smaller spiral galaxies at some stage in their
history. Systems of interacting galaxies are usually classified according to their size. Pairs of
galaxies that interact with each other are the simplest form of organization and where most
of the mergers occur. Groups are the most common type of galaxy systems, comprised by
small, irregular associations of a few tens of galaxies. Clusters are galactic systems that
contains a larger number (at least 50) of bright galaxies. Groups and clusters of galaxies
may form even larger systems, called Superclusters.

Between galaxies in those systems there can be different stages of interaction that are
better illustrated by the images in Figure 2.1. Each of the 6 images is a different galaxy
picked specifically to depict a particular stage of galaxy interaction:

1. The first sign of an interaction;

3



4 BACKGROUND 2.1

Figure 2.1: Snapshots of galaxies at different stages of merging from ESA/Hubble, available at:
www.spacetelescope.org/ images/heic0810ac/ .

2. Tidal tails stretch out as the outer reaches of the galaxies begin to intermingle;

3. Long tidal tails are the signature of an interaction;

4. The galaxy cores approach each other and their gas and dust clouds are accelerated
dramatically;

5. Gas and dust are siphoned into the active central regions and they become some of
the brightest infrared objects in the sky;

6. Stars form from large clouds of gas creating brilliant blue star clusters triggered by
the interaction between the galaxies.

Astronomers have been using several different methods to automatically detect galaxy
mergers. Some of them (Lin et al., 2004) identify luminosity peaks by using the close-pairs
algorithm. Other methods rely on hand-crafted feature detectors to classify the imaging data
and are used by several researchers (Conselice, 2003; Goulding et al., 2017; Hoyos et al.,
2012; Lotz et al., 2004). Most of these works share a common issue, which is the difficulty
of capturing all the types of galaxy mergers, and the variations in the detection at each
different stage of the merging process.

www.spacetelescope.org/images/heic0810ac/
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2.1.2 Photometric Surveys

In astronomy, there are two main tools to collect data, namely Spectroscopy and Pho-
tometry. Spectroscopy is the measurement of light as a function of wavelength, divided in
thousands of very narrow bands. This enables astronomers to study objects in much detail,
but with the drawback of being able to explore only few objects at a time. Photometry, on
the other hand, enables the capture of data from thousands of objects at once, but with only
a few, wide, wavelength bands, typically 5 to 30. The current approach used by astronomers
is to gather information for many objects using photometry, detect objects of interest among
those observed, and then capture fine-grained data for those few selected using spectroscopy.
This data is essential to study the evolution of galaxies.

2.2 Deep Learning

Over the past few years, artificial intelligence has attracted a good amount of atten-
tion following the success of machine learning and neural networks applications. The idea
behind machine learning is to develop computer algorithms that can automatically learn pat-
terns from data. There are several approaches, the most common being Supervised Learning
(for data with labels), Unsupervised learning (for data without labels) and Reinforcement
Learning (for agents taking actions in an environment). There are several machine learning
algorithms, with artificial neural networks (ANNs) being one of the most successful. More
recently, the idea of Deep Learning appeared, which is, in simple words, the capability of
learning how to extract good features from data while learning how to solve the classifica-
tion problem. This enabled a revolution in domains such as text, image and video, where
classic machine learning techniques previously relied on hard-to-tune, hand-crafted feature
extractors to work well.

2.2.1 Neural Networks

Neural networks have been a focus of research since the early 1940s by McCulloch and Pitts
(1943) when artificial neural networks (ANNs) took a biological inspiration by the way neu-
ral networks in animals work for visual processing in the cortex and how this information
flows inside the brain through its neurons. In their paper, they introduced the idea of neural
networks as computing machines and latter were backed up by Hebb (1949) for postulating
the first rule for self-organized learning, which is an attempt to explain the adaptation of
brain neurons during the learning process (in a biological standpoint).

A decade later Rosenblatt (1958) would be responsible for proposing the perceptron as
the first model for supervised learning. It is an algorithm that can predict whether a vector of
numbers belongs to a class or not. This makes the perceptron a type of linear classifier that
combines a set of weights together with the input vector and makes predictions. Formally,
this can be defined as follows (Nielsen, 2015):
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output =

{
0 if

∑
j wjxj ≤ threshold

1 if
∑

j wjxj > threshold
(2.1)

This simple model takes the input vector x1, x2, . . . and weights w1, w2, . . . that measure
the importance of each input to the final sum and then finally uses an activation function to
decide the output according to some threshold (in this case it is either 0 or 1). This model
can be better visualised in Figure 2.2.

Figure 2.2: A simplified representation of the Perceptron.

These concepts were generalized by Minsky and Papert (1969) with their book titled
Perceptrons that outlined several limits to what perceptrons could do and led to a so called
AI Winter that would last for almost two entire decades and would halt the research efforts
on neural networks. One of the problems with perceptrons that they described is the XOR
(exclusive or) problem, that showed that using a neural network made of one layer of per-
ceptrons could not accurately predict the outputs of XOR logic gates because this problem
is not linearly separable, and perceptrons can only classify data with linear separability.

The limitations of the single layer perceptron were overcome by the introduction of the
Multilayer Perceptrons (MLP) by Rumelhart et al. (1988). They consist of one input layer,
one output layer and one or more hidden layers, as illustrated in Figure 2.3. The Multilayer
Perceptrons solved the previously outlined problems with Perceptrons because they are able
to distinguish data that is not linearly separable. This model also has an activation function
for each individual neuron and became the building block for the modern architectures of
neural networks.

Instead of using Linear classifiers such as the original Perceptron, modern architectures
use different activation functions to better determine the output of one neuron by modulating
the output to an interval. These functions are very close to a linear classifier, but each of
them has some unique property that makes it better in practice because they introduce non-
linearity to the network. Most of them are differentiable in their domain, and those functions
alongside the addition of more hidden layers made Neural Networks a viable option once
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Figure 2.3: A simple Multilayer Perceptron example.

again. The Sigmoid and hyperbolic tangent functions were extensively used as activation
functions in the past, but most modern architectures nowadays use ReLU (Nair and Hinton,
2010) or even Leaky ReLU (Maas et al., 2013), which are faster to compute, and even though
the ReLU function is not differentiable in all points of its domain, it does not make a
difference numerically. These activation functions are plotted below:
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Figure 2.4: Sigmoid.
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Figure 2.5: ReLU.
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Figure 2.6: Leaky ReLU.

2.2.2 Gradient descent and backpropagation

To understand how a network is trained, an overview on how the gradient descent and
backpropagation algorithms work is necessary. In neural networks, gradient descent is used
to minimize a cost function iteratively by moving in the direction of steepest descent to
update the weights of the model. A good analogy is thinking about a ball rolling downhill
until it finds a deep valley and stops.

This algorithm should be able to determine the weights w (and biases) so that the
output a(x,w) calculated by the model is closer to the expected label y(x) for each input
x on a training set of size n. To determine how good the outputs are approximated, the
most popular cost function can be defined based as the mean squared error (MSE) of the
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calculated outputs in comparison with the expected classes. This function can be represented
by a simplification of the notation used by Nielsen (2015):

J(w) =
1

2n

∑
x

∥y(x)− a(x,w)∥2 (2.2)

Another popular loss function, used specifically for binary classification problems, is the
binary cross-entropy function. It measures the performance of a classification model whose
output is a probability value between 0 and 1, and it is also known as log loss because
it uses the logarithm of the predictions a(x,w) together with each expected label y(x) for
the weights w (and biases). A simplified representation of this function can be defined as
follows (Nielsen, 2015):

J(w) = −(y(x) log a(x,w) + (1− y(x)) log (1− a(x,w))) (2.3)

The goal of the gradient descent training algorithm is to minimize the cost J(w) such as
the ones defined in Equations 2.2 or 2.3, depending on the loss function chosen. Since the
error surface of the chosen loss function may be non-convex, there is no guarantee that a
global minimum will be found, but modern implementations of gradient descent are known
to be able to find good local minima. Using the deductions explained in details by Nielsen
(2015), it is possible to define the variation of the weights w as a function of the gradient of
the cost function J(w) and the learning rate η.

∆w = −η∇J (2.4)

A good way to iteratively calculate the gradient of the cost function is to use an algorithm
called backpropagation. The modern implementation of the backpropagation learning algo-
rithm used in convolutional neural networks was defined by LeCun et al. (1989) and follows
a very detailed mathematical demonstration of the equations necessary for the algorithm to
work. For simplicity only an overview of the general method is presented here.

Backpropagation is the name of the algorithm because it propagates the error on the
output back from the last layer until the first one. A simple representation of the algorithm
based on the Perceptron is illustrated in Figure 2.7 and followed by the main steps necessary
for the implementation of backpropagation.

1. Input x: Set the activation a1 for the input layer;

2. Feedforward: For each layer l, compute the activation zl = wlal−1+bl and al = σ(zl);

3. Output error: Compute the error of the output layer;
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Figure 2.7: A simplification of the application of backpropagation on the previous Perceptron
example in Figure 2.2

4. Backpropagate: Compute the error for each layer and propagate it to the previous
one;

5. Update weights: Calculate the gradient of the cost function to update the weights
for each layer.

A problem with backpropagation is that it requires the previous calculations of the
derivatives for the layers of the neural network. To mitigate this, there is an version of this
algorithm called Stochastic Gradient Descent (SGD), which is a variation of gradient descent
that uses randomly selected samples of training inputs instead of training the entire dataset
at the same time. Nowadays there is also the commonly used mini-batch SGD, that makes
an statistical estimation of the entire training set by using samples in mini-batches for each
epoch and calculates the gradients for each mini-batch.

An improved version of the basic stochastic gradient descent algorithm is called Adam
(short for Adaptive Moment Estimation) and was proposed by Kingma and Ba (2014). It
adapts the learning rate η at each iteration and is considered to be a very robust improvement
on previous optimizers.

2.2.3 Convolutional Neural Networks

In image processing, convolution is a very important operation that transforms an image
by applying a kernel over each group of pixels. Adapted from the convolution operator
defined by Bracewell and Bracewell (1986), each pixel of the image Y can be defined as a
2D matrix that each pixel i× j is the result of the convolution of the kernel filter K of size
m× n and the original image X, as follows:

Y [i, j] =

⌊n
2
⌋∑

m=−⌊n
2
⌋

⌊n
2
⌋∑

n=−⌊n
2
⌋

K [m,n] ·X [i−m, j − n] (2.5)
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This concept was applied by LeCun et al. (1995) with the first Convolutional Neural
Network, called LeNet, with 3 different types of layers: The convolutional layers use the
convolution operation to process the image; the pooling layer reduce the dimensions of the
data by combining the outputs of the previous layer into a single neuron in the next layer; and
the fully-connected (also known as dense) layer that classify the images and work similarly
as a Multilayer Perceptron. Large networks can have blocks that group up layers that serve
a particular purpose and also specific activation functions for each convolutional or fully-
connected layer. The most common layers, blocks and activation functions are represented
on Figure 2.8.

Figure 2.8: Legend for the symbols used to illustrate the architectures inspired by this article from
Raimi Karim at www.towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d/ .

Based on the original architecture LeCun et al. (1998) designed LeNet-5 (Figure 2.9), an
improved version for the purpose of recognizing handwritten digits in 32x32 pixel images.
At the time, the activation function used was the tanh and the average-pooling layer had
trainable weights.

Figure 2.9: LeNet-5 architecture (Legends on Figure 2.8).

After over 10 years without major advances on this field, Alexnet appeared (Figure 2.10)
designed by Krizhevsky et al. (2012). With 60 Million parameters, it has 3 convolutional
layers more than LeNet-5 and was the first network to implement ReLU activation functions.

www.towardsdatascience.com/illustrated-10-cnn-architectures-95d78ace614d/
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Figure 2.10: AlexNet architecture (Legends on Figure 2.8).

At this point the more recent architectures start to get deeper, namely VGG-16 (Fig-
ure 2.11) created by Simonyan and Zisserman (2014), who were part of the Visual Geometry
Group (VGG) at the University of Oxford. The network consists of 138 Million parameters,
has 13 convolutional and 3 fully-connected layers and also has a deeper variant, namely
VGG-19.

Figure 2.11: VGG-16 architecture (Legends on Figure 2.8).

With the popularisation of very networks, came the problem of designing even deeper
Convolutional Neural Networks without compromising the generalisation power of the model.
To do so, ResNet was developed by He et al. (2016) at Microsoft Research and used batch
normalisation and skip connections to avoid degradation of the accuracy of deep networks
and even though this was not the first architecture to use these techniques, ResNet50 (Fig-
ure 2.12) popularised them.

Figure 2.12: ResNet-50 architecture (Legends on Figure 2.8).

Inspired by the movie Inception (Nolan, 2010) and the famous quote “We need to go
deeper”, Szegedy et al. (2016) designed the Inception architecture. The idea behind it was
to stack dense blocks of convolutional layers and use batch normalisation in auxiliary layers.
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The Inception-v3 (Figure 2.13) model became very successful and with 24 million parameters
was considered a very deep network.

Figure 2.13: Inception-v3 architecture (Legends on Figure 2.8).

Similar to ResNet, Densenet by Huang et al. (2017) adds shortcuts among layers, but
has less trainable parameters because each layer receives feature maps from all preceding
layers, making a thinner and compact network. It also features a growth rate hyperparameter
that defines how many additional channels are needed for each layer. With only 0.8 Million
parameter, Densenet-121 (Figure 2.14) is the lightest of the modern architectures cited in
this section.

Figure 2.14: Densenet-121 architecture (Legends on Figure 2.8).



Chapter 3

Experimental Setup

3.1 Dataset

3.1.1 Galaxy Mergers Images

The dataset used in this work is comprised of 16000 RGB images from the Sloan Digital
Sky Survey (SDSS) Data Release 71. This dataset is the same used by Ackermann et al.
(2018) in their work, which makes our results comparable to theirs. The dataset contains
two classes, namely merger, the one we are interested in detecting, and non-interacting, as
labeled by the Galaxy Zoo project Lintott et al. 2010.

There are 6000 images labeled as merger (see Figure 3.1) and 10000 images labeled as
non-interacting (see Figure 3.2).

Figure 3.1: Sample images of galaxy merg-
ers.

Figure 3.2: Sample images of non-
interacting galaxies.

1SDSS dataset available at: http://skyserver.sdss.org/dr12/en/help/docs/api.aspx
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3.1.2 Dataset preparation

The preparation consists of 3 steps2:

1. Loading and normalizing the images;

2. Resizing the images;

3. Splitting the dataset and augmenting the data.

The first step is to normalize the images, by dividing its values by 255, which is the
maximum values of an RGB channel. The second step is to resize all images, to make their
sizes uniform (96x96 pixels), since the dataset has images with different crops depending
on the astronomical object observed and the zooming technique applied. The chosen size
provided a good trade-off between image quality and size, with a resolution high enough for
the selected CNN architectures to perform well.

Lastly, the dataset was split between training, validation and test sets at a 80/10/10
rate, since the dataset was large enough to allow for smaller test and validation sets. After
that, 18 versions of each image from each set were generated by rotation in increments of 20
degrees.

Table 3.1: Number of images in every split of the dataset after augmenting the data.

Set % # of images size (Gb)
Training 80 230400 24.8
Validation 10 28800 3.1
Test 10 28800 3.1

3.2 Experiment 1: Training networks from scratch

The first experiment consists in training 3 different architectures from scratch, i.e., ini-
tializing the model with random weights and training them using the training data. The ar-
chitectures used for this experiment were: VGG-16 (Figure 2.11), Inception-v3 (Figure 2.13)
and DenseNet-121 (Figure 2.14). These are very popular models that are readily available,
and were presented in Chapter 2. The process was done as follows:

1. Use random initialization to the weights;

2. Add top layers;

3. Train using mini-batch SGD with a standard learning rate.
2The scripts necessary to prepare the dataset are available at: github.com/jonasarilho/galaxy_mergers/

tree/master/prepare_dataset

github.com/jonasarilho/galaxy_mergers/tree/master/prepare_dataset
github.com/jonasarilho/galaxy_mergers/tree/master/prepare_dataset
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The top layers are basically a global average pooling layer and a fully-connected (dense)
layer with 2048 units. As an activation function, Leaky ReLU was chosen as a fresh alterna-
tive to more classic functions. Explicit kernel and bias initializers were used, using the Glorot
uniform initializer (Glorot and Bengio, 2010) and a constant bias b = 0.01.The optimizer
chosen was stochastic gradient descent (SGD) with a learning rate l = 0.01.

As supported by Keskar et al. (2016), a mini-batch of size 32 was chosen for the training,
and early-stopping was used to halt the process after when validation loss was no longer
improving and to restore the best weights during the training process. To compensate for
an unbalanced dataset, class weights were used to balance the training data.

To try to minimize overfitting, a few regularization techniques were used. Dropout is one
of those, first used by Srivastava et al. (2014), that aims to prevent complex co-adaptations
on training data by keeping or dropping-out a node given a certain probability P (in this
experiment, P = 0.5 was used for the top layer). It is worth mentioning that this technique
improves training speed significantly as well.

3.3 Experiment 2: Using pre-trained networks

The second experiment consists in the fine tuning of pre-trained convolutional neural
networks. The architectures used are the same as on the first experiment, but in this one
only the last convolutional blocks are trained alongside the top layers and the weights are
loaded from a model pre-trained on the Imagenet dataset (Deng et al., 2009). This was done
as follows:

1. Load the pre-trained CNN with weights;

2. Add top layers to the CNN and use the ADAM optimizer to train only the top layers;

3. Fine-tune the last convolutional blocks using mini-batch SGD with a small learning
rate and momentum.

The top layers were basically the same from the previous experiment, the only difference
being the addition of more regularization in order to reduce overfitting. This was done by
using a max-norm constraint, which limits the norm of the weights for a layer, and is a
technique that pairs well with Dropout, as found by Srivastava et al. (2014). The use of L2
regularization was also used, a technique first used by Ng (2004) that incorporates penalties
in the loss function.





Chapter 4

Results

4.1 Experiment 1 Results

4.1.1 Training process

We divide our experiment execution in two parts: firstly, we train the model using the
training set, and check its accuracy on the validation. By doing this, we can have a good
approximation of the generalization capability of the model, and also detect problems that
may arise, such as overfitting. Secondly, after selecting the model that perform better on the
validation set, we evaluate the model on the test set, to assess its generalization capability
on yet another data set, which is important to avoid overfitting to the validation set.

The process of learning from scratch with the 3 different architectures as described in
Section 3.2 takes a few epochs to complete and at the end of each training session, the
training script generates a graph comparing the training and validation accuracy for each
epoch. Those graphs serve as an overview of the process and each epoch took about 1 hour
to complete in the setup used.

Figure 4.1: VGG-16 train-
ing and validation accuracy
from scratch.

Figure 4.2: Inception-v3
training and validation accu-
racy from scratch.

Figure 4.3: DenseNet-121
training and validation accu-
racy from scratch.

The training of the VGG-16 architecture (Figure 4.1), the shallowest model among the
ones studied, took only a few epochs to converge and showed few signs of overfitting. In the
last epochs, the model starts to overfit and the early-stopping callback halts the training

17



18 RESULTS 4.2

process. The Inception-v3 model (Figure 4.2) also took only a few epochs to train and
showed some unstable results in terms of accuracy on the validation set. The DenseNet-121
architecture (Figure 4.3) showed a more clear sign of overfitting in comparison to the other
models, and the early-stopping callback does well in stopping its training only after a few
epochs.

In general, the models trained from scratch presented slight to moderate overfitting and
also showed signs of the training set being small and unrepresentative. Other than that, the
validation accuracy was already good enough for the problem.

4.1.2 Test results

After training the different architectures with different hyperparameters on the training
set and evaluating them on the validation set, we measure the accuracy of the best models
on the test set, which was never used during training. The accuracy was measured for each
architecture and the results are shown in Table 4.1.

Table 4.1: Accuracy on test set for each architecture.

Architecture Accuracy
VGG-16 95.87%
Inception-v3 95.53%
DenseNet-121 96.10%

All three architectures showed good accuracy on the test set, only differing a little from
each other. It is very interesting to note that training these models from scratch without much
sophisticated Deep Learning techniques yielded consistent results with high classification
accuracy.

4.2 Experiment 2 Results

4.2.1 Training process

The process of using transfer learning to train the network with the three different
architectures as described in Section 3.3 takes a few epochs to complete the first training
with the convolutional layers frozen, and a few more epochs to complete the fine-tuning step.
Again, at the end of each training session, the training script generates a graph comparing
the training and validation accuracy for each epoch. Each epoch took about an hour to
complete in the setup used and the first step took from 4-10 hours depending on the model.

The VGG-16 model (Figure 4.4) took just a few epochs to converge and showed moderate
overfitting, which was accentuated on the last epochs, just before the early-stopping callback
halts the training process. The training of the Inception-v3 architecture (Figure 4.5) pre-
sented difficulties, as the network was unable to learn how to classify the data correctly. The
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Figure 4.4: VGG-16 train-
ing and validation accuracy
with transfer learning.

Figure 4.5: Inception-v3
training and validation accu-
racy with transfer learning.

Figure 4.6: DenseNet-121
training and validation accu-
racy with transfer learning.

graph shows unstable peaks of validation accuracy in terms of accuracy on the validation
set. The DenseNet-121 model (Figure 4.6) took the longest to train (over 70 epochs), taking
about 1 hour for the completion of each epoch. This model showed a clear sign of overfitting,
but the validation and training accuracies were almost parallel in the graph, which could be
a sign of an unrepresentative training set.

4.2.2 Test results

After completing the training process, we evaluate the different architectures on the test
set. The results obtained are shown in Table 4.2.

Table 4.2: Accuracy on test set for each architecture.

Architecture Accuracy
VGG-16 96.81%
Inception-v3 36.82%
DenseNet-121 96.82%

As expected, given the test results, the accuracy of the Inception-v3 stands out as being
very poor. Apart from this outlier, the other architectures displayed very good accuracy on
the test set, both achieving very similar results.

4.3 Comparing experiments

In classification problems, there are a few metrics to measure the performance of a
given classifier. The precision p of a class is the number of True Positives (i.e. the images
correctly classified in this class) over all True Positives and False Positives (i.e. the images
incorrectly classified as belonging to this class). The recall r of a class is the number of True
Positives over all all True Positives and False Negatives (i.e. the images incorrectly rejected
as belonging to this class). The F1-score F1 of a class is the harmonic mean of precision p

and the recall r. These metrics can be defined as follows (Olson and Delen 2008):
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p =
TP

TP + FP
(4.1)

r =
TP

TP + FN
(4.2)

F1 = 2.
. r

p+ r
(4.3)

For each experiment and architecture, these metrics were obtained by using the trained
model and generating a classification report with the data from the test set. The reports are
shown in Table 4.4.

Table 4.3: Precision (p), Recall(r) and F1-score(F1) for each architecture and experiment (E).

Architecture E p r F1

VGG-16 1 0.96 0.96 0.96
2 0.97 0.97 0.97

InceptionV3 1 0.96 0.96 0.96
2 0.25 0.37 0.20

Densenet121 1 0.96 0.96 0.96
2 0.97 0.97 0.97

Most architectures had similar classification performance, and the main difference found
was a slight improvement by using transfer learning instead of learning from scratch. The
only clear outlier was the Inception-v3 model on the second experiment, which was not
unexpected given previous results.

It is also interesting to compare the results obtained in this study to previous methods
and other Deep Learning approaches. To do so, the best results from each experiment are
shown alongside the other models on the table below:

Table 4.4: Precision (p), Recall(r) and F1-score(F1) for the best versions of each experiment in
comparison with other classification methods.

Method p r F1

Hoyos et al. (2012) 0.92 0.29 0.44
Goulding et al. (2017) 0.75 0.90 0.82
Ackermann et al. (2018) 0.96 0.97 0.97
Experiment 1 0.96 0.96 0.96
Experiment 2 0.97 0.97 0.97

Keeping in mind that only the recall r is the only invariant quantity between all the
methods, because different authors used different class ratios to balance the data, it is the
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most reliable comparison parameter. But even so, the comparison with the results found
by Ackermann et al. (2018) can be done for all parameters, since the same dataset and a
similar balance for the classes were used.

In comparison with Hoyos et al. (2012), that used an automatic classification process
based on the morphological properties of the residual images of galaxies, the Deep Learning
models in this study clearly show improvements. This holds specially for the detection of
False Negatives, in this case images that are not galaxy mergers but were incorrectly classified
as merging, as can be seen by comparing the recall metric.

The Machine Learning random forest decision tree technique used by Goulding et al.
(2017) was also outperformed by our results, what can be clearly seen by analyzing the
recall metric. In general, using Deep Learning to detect galaxy mergers showed better results
overall than any other technique previously used for this problem.





Chapter 5

Conclusion

The results presented on Chapter 4 showed that a high accuracy can be achieved by
using multiple Deep Learning techniques and architectures in this dataset. The performance
obtained for detection of galaxy mergers in this study is a significant improvement over
previous methods for automatic visual classification.

It is also worth noting that by using transfer learning from the Imagenet dataset to the
images of merging galaxies there was a slight increase in performance. But considering the
results of both experiments, it is safe to say that both approaches yielded good results for
this dataset.

This work showed that the results achieved by Ackermann et al. (2018) can be reproduced
and even slightly improved with alternative architectures and regularization techniques. As-
suming that the dataset used is representative of images of merging galaxies generated by
photometric surveys, then this study presents a reliable approach to detect galaxy mergers
and could also possibly serve as a reference for other classification problems with astronom-
ical imaging data.
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