
Contents

1 Introduction 2

2 Preliminaries 3
2.1 Order . 3
2.2 Graph theory . 3
2.3 Linear algebra . 6

2.3.1 Basic definitions . 6
2.3.2 Projections and direct sum . 7

2.4 The Laplacian . 8
2.5 Harmonic Functions . 9
2.6 Measure Theory . 10

I Laplacian-Based Algorithms 12

3 The Naive Algorithm 13
3.1 Cauchy-Binet formula . 13
3.2 Matrix Tree Theorems . 19
3.3 The Algorithm . 22

4 The Harvey-Xu Algorithm 27
4.1 The Moore-Penrose pseudoinverse . 27
4.2 Effective Resistances as Marginal Probabilities . 31
4.3 The Harvey and Xu algorithm . 32

II Random Walk-Based Algorithms 33

5 Random Walks 34
5.1 Markov Chains . 34
5.2 Arrival time and cover time . 34

6 The Aldous-Broder Algorithm 36

1

Chapter 1

Introduction

Seriously, the stuff here is really cool and everybody should pay me to study it.

2

Chapter 2

Preliminaries

2.1 Order
Definition 2.1. Given a set A, a relation ≤ in A is a partial order in it if

(i) the relation is reflexive, that is, for every a ∈ A it holds that a ≤ a,

(ii) the relation is antisymmetric, that is, if a ≤ b and b ≤ a then a = b,

(iii) the relation is transitive, that is, if a ≤ b and b ≤ c, then a ≤ c,

When ≤ is a partial order on A, we also say that (A,≤) is a partially ordered set.

Definition 2.2. A partially ordered set (A,≤) is said to be totally ordered if the relation is total, that is, if
for every a, b ∈ A it holds that a ≤ b or b ≤ a.

2.2 Graph theory

Definition 2.3. A graph is an ordered tripleG = (V,E, ψ), where V and E are finite sets and ψ : E →
(
V
1

)
∪
(
V
2

)
.

The elements of the set V are called vertices. The elements of the set E are called edges. The function ψ
is called the incidence function. An edge e ∈ E is said to be incident on the vertices that belong to ψ(e).
Two vertices i and j are said to be adjacent, or, likewise, j is said to be adjacent to i, if {i, j} ∈ ψ(E).

Definition 2.4. A digraph is an ordered triple D = (V,A, ψ), where V and E are finite sets and
ψ : A→ V × V .

The elements of the set V are called vertices and the function ψ is called the incidence function, just
like before. However, the elements of the set A are called arcs, to emphasize the difference in their nature
from the edges of a graph. This difference renders the meaning of “adjacent” ambiguous, and its use will be
avoided. For an arc a ∈ A, if ψ(a) = (i, j), i is said to be the tail of the arc, j is said to be the head of the
arc, and a is said to be incident on i and to be incident on j.

There’s now a need to stop and pay respect to tradition. There are some notations that are widespread
for its simplicity, and should be properly explained according to the definitions.

First of all, even though arcs and edges are different, a notation that masks their differences is widely
adopted. In both contexts, graphs and digraphs, ij will be used, and it’s hoped the reader will notice and
correctly parse it as (i, j) when it’s an arc, and as {i, j} when it’s an edge.

Also, graphs are commonly thought of as a symmetric relation E on a finite set V . This interpretation
usually cast aside the case of “parallel edges”, i.e., of distinct edges e ∈ E and f ∈ E such that ψ(e) = ψ(f).
To ignore such cases is precisely to require that the incidence function is injective. Note that, in such cases,
the set ψ(E) uniquely determines the graph. When this happens, and only when this happens, the incidence
function will be omitted, and the graph will be denoted as G = (V,E), when what is actually meant is
G = (V, ψ(E), (x 7→ x)).

The same reasoning should be applied when “a digraph D = (V,A)” is encountered within the text.

3

Definition 2.5. Let D = (V,A, ψ) be a digraph. Let π : V × V →
(
V
1

)
∪
(
V
2

)
be defined by (i, j) 7→ {i, j}.

The underlying graph of D is the graph G := (V,E, φ), where E = A and φ = π ◦ ψ.

The function π in the above definition encrypts the idea of “forgetting” the orientation of an arc. For such
a reason, another way of stating that D is a digraph and G is its underlying graph is to state that D is an
orientation of G.

Definition 2.6. An weighted graph is a pair (G,w), where G = (V,E, ψ) is a graph and w : E → R. It can
also be denoted as G = (V,E, ψ,w).

Definition 2.7. An weighted digraph is a pair (D,w), where D = (V,A, ψ) is a digraph and w : A→ R. It
can also be denoted as D = (V,A, ψ,w).

Given an weigthed digraph (D,w), the weigthed graph (G,w), with G being the underlying graph of D,
will be called underlying weighted graph of (D,w).

Definition 2.8. Let G be a graph. Two distinct vertices i and j are said to be connected if either they are
adjacent, or there exists a third vertex k adjacent to i that is connected to j. A graph is said to be connected
if every pair of distinct vertices is connected.

Definition 2.9. A subgraph of a graph G = (V,E, ψ) is a graph H = (S, F, φ), with S ⊆ V , F ⊆ E and φ
being the restriction of ψ on F .

Definition 2.10. A subdigraph of a digraph D = (V,A, ψ) is a digraph C = (S,B, φ), with S ⊆ V , B ⊆ A
and φ being the restriction of ψ on B.

The set of subgraphs of a graph G, when equipped with the relation “is a subgraph of”, is a complete
lattice. This observation gives meaning to statements like minimal subgraph and maximal subgraph. The
same idea applies to the set of subdigraphs of a digraph.

Definition 2.11. A component of a graph G is a maximal connected subgraph.

Definition 2.12. A walk on a graphG is a finite alternating sequence of vertices and edges (u0, e0, u1, . . . , el−1, ul)
such that, for every 0 ≤ i < l,

ψ(ei) = {ui, ui+1}.

The integer l is called the length of the walk, and is precisely the number of edges in it.
Similarly, a walk on a digraph D is a finite alternating sequence of vertices and arcs (u0, a0, u1, . . . , al−1, ul)

such that, for every 0 ≤ i < l,
ψ(ai) = (ui, ui+1).

Further down the road, we’ll handle “random walks”. Beware: despite the name, a random walk on a
graph is not a walk as defined above. It is a much more interesting mathematical object, that actually is
connected to walks, but it will demand its own definition and machinery to be dealt with.

Definition 2.13. A trail on a graph is a walk (u0, e0, . . . , el−1, ul) on it such that the map i 7→ ei, defined
on {0, . . . , l − 1}, is injective.

Definition 2.14. A trail on a digraph is a walk (u0, a0, . . . , al−1, ul) on it such that the map i 7→ ai, defined
on {0, . . . , l − 1}, is injective.

Definition 2.15. A cycle on a graph is a trail (u0, e0, . . . , el−1, ul) on it such that u0 = ul.

Definition 2.16. A path on a graph is a walk (u0, e0, . . . , el−1, ul) on it such that the map i 7→ ui, defined
on {0, . . . , l} is injective.

Definition 2.17. A path on a digraph is a walk (u0, a0, . . . , al−1, ul) on it such that the map i 7→ ui, defined
on {0, . . . , l}, is injective.

Definition 2.18. A spanning subgraph H = (S, F, ψ) of G = (V,E, ψ) is a subgraph such that S = V .

4

Definition 2.19. Let G = (V,E, ψ) be a graph. Let S ⊆ V . The spanning subgraph generated by S is the
subgraph G [S] = (V, F), where

F := { e ∈ E : φ(e) ⊆ S}.
Definition 2.20. A spanning tree of a graph G is a minimal connected spanning subgraph, i.e., a subgraph
such that every spanning subgraph of it is not connected. The collection of sets of edges F such that (V, F)
is a spanning tree is denoted as TG.
Definition 2.21. A tree is a graph G = (V,E, ψ) such that (V,E) itself is a spanning tree.

Definition 2.22. Let G = (V,E, ψ) be a graph. The neighborhood function is the function δ : V → 2E

defined by i 7→ { e ∈ E : i ∈ ψ(e)}. The integer |δ(i)| is called the degree of the vertex i.

Definition 2.23. Let D = (V,A, ψ) be a digraph. The in-neighborhood function is the function δin : V → 2A

defined by i 7→ { e ∈ E : ∃j ∈ V ψ(e) = ji}. The integer
∣∣δin(i)

∣∣ is called the in-degree of vertex i.

Definition 2.24. LetD = (V,A, ψ) be a digraph. The out-neighborhood function is the function δout : V → 2A

defined by i 7→ { e ∈ E : ∃j ∈ V ψ(e) = ij}. The integer |δout(i)| is called the out-degree of vertex i.

Definition 2.25. A s-arborescence is a digraph D = (V,A, ψ) such that its underlying graph G is a tree
and such that, for every i ∈ V , ∣∣δin(i)

∣∣ = [i 6= s].

The collection of sets of edges B such that (V,B) is a s-arborescence is denoted as TD(s).

The following theorem will be used tacitly in inductions involving trees.

Theorem 2.26. Let T = (V,E) be a tree with |V | > 2. Then there are at least 2 vertices of T with degreee
1.

Proof. First, note that for every f ∈ RV , if there is a real number α ∈ R such that α < f(i) for every i ∈ V ,
then α < 1/ |V |

∑
i∈V f(i). This is clear from

|V |α =
∑
i∈V

α <
∑
i∈V

f(i).

The contrapositive of this statement is that, for every f ∈ RV , there is a k ∈ V such that

f(k) ≤ 1

|V |
∑
i∈V

f(i).

This will be the main tool on this proof. First, note that if T = (V,A) is a tree,

1

|V |
∑
i∈V
|δ(i)| = 2(|V | − 1)

|V |
= 2− 2

|V |
.

Therefore, there exists a vertex k ∈ V such that |δ(k)| ≤ 2− 2
|V | . Since |δ(k)| must be an integer, we have

that |δ(k)| ≤ 1. Also, since the tree is connected, the degree of every vertex is at least 1, so that |δ(k)| = 1.
To produce the second vertex with degree 1, suffices to repeat the argument. Note that

1

|V | − 1

∑
i∈V \{k}

|δ(i)| = 2(|V | − 1)− 1

|V | − 1
= 2− 1

|V | − 1
.

Therefore, there is a j ∈ V with |δ(j)| ≤ 1, and as before, this implies that |δ(j)| = 1, finishing the
proof.

Vertices in a tree whose degree equals to 1 are called leafs.

Theorem 2.27. Let D = (V,A) be an i-arborescence with |V | > 2. Then there is j ∈ V \ {i} with outdegree
1.

Proof. The underlying graph of D has at least two leafs, at least one of which is different from i. Let j be it.
Then, since j 6= i, we have that |δ(j)| = 1. Therefore, since∣∣δin(j)

∣∣+
∣∣δout(j)∣∣ = 1,

it follows that δout(j) = ∅.

5

2.3 Linear algebra

2.3.1 Basic definitions
Definition 2.28. An Euclidean space E is a pair (V, 〈·, ·〉), where V is a vector space over R and 〈·, ·〉 : V × V → R
is a symmetric, bilinear, positive-definite function.

Definition 2.29. Given a finite set S, RS will denote the Euclidean space (RS , 〈·, ·〉), where for any f and g
members of RS ,

〈f, g〉 :=
∑
i∈S

f(i)g(i).

Many notations here should be understood as combinatorial hints. For a given set U , the set RU is
precisely the functions from U to R, for example. In a “technically correct” spirit, just as much as the 2 in 2U

represents the set {0, 1}, the number 1 will be used to denote the set {0} — or {∅}, equivalently.

Definition 2.30. Let U and V be finite sets. A matrix is a function A : V × U → R.

In the above definition, the elements of V are called the rows of A, and the elements of U are called the
columns of A.

Definition 2.31. Let U and V be finite sets. Let A ∈ RV×U . The tranpose AT is a matrix in RU×V defined
by

(i, j) 7→ Aji.

Definition 2.32. Let U, V, and T be finite sets. Let A ∈ RV×U and B ∈ RU×T . The product AB is the
matrix AB : V × T → R given by

(i, j) 7→
∑
k∈U

AikBkj .

With the set interpretation of 1 in mind, the sets RU and RU×1 will be used interchangeably. Such abuse
is both possible and helpful. It is possible since there is a canonical isomorphism between such sets, and it is
helpful since it reduces every matrix-vector product into a matrix-matrix product.

Do not despair. The just mentioned isomorphism will be properly defined on Section 3.1.

Definition 2.33. Let U and V be finite sets, and let A ∈ RV×U . Given sets S ⊆ U and T ⊆ V , a submatrix
A[T, S] is the matrix obtained from A by restricting its domain from V × U to T × S.

Proposition 2.34. Let U, V, and T be finite sets. Let A ∈ RV×U and B ∈ RU×T . Let R ⊆ T and S ⊆ V .
Then

(AB)[S,R] = A[S,U]B[U,R].

Proof. This is precisely what the submatrix definition means, applied to the product of two matrices.

It is supposed that the reader is already familiar with the notion of determinant. However, for the
treatment required on this paper, it is necessary to take a longer look on the definitions and properties of
determinants.

Definition 2.35. Let U be a finite set. The determinant of a matrix A ∈ RU×U is

det(A) :=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

Ai,σ(i).

Theorem 2.36. Let U be a finite set, and let A ∈ RU×U . Then

det(A) = det(AT).

6

Proof. By definition,
det(A) =

∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

Ai,σ(i).

Since σ is invertible and sgn(σ−1) = sgn(σ), then

det(A) =
∑

σ∈Sym(U)

sgn(σ−1)
∏
i∈U

Aσ−1(i),i.

Moreover, by noting that the function σ 7→ σ−1 from Sym(U) to itself is bijective, one can change the
summation range and obtain that

det(A) =
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

Aτ(i),i =
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

(AT)i,τ(i) = det(AT).

Theorem 2.37 (Laplace expansions). Let I and J be finite sets such that |I| = |J |. Let `I : I → [|I|] and
`J : J → [|I|] be bijective functions. Then

det(A) =
∑
i∈I

(−1)`I(i)+`J (j)Ai,j det(A[{i}c, {j}c]) (2.38)

det(A) =
∑
j∈J

(−1)`I(i)+`J (j)Ai,j det(A[{i}c, {j}c]). (2.39)

Proof.

Lemma 2.40. Let V be a finite set. Let A ∈ RV×V be an invertible matrix, and let x, y ∈ RV . Then

det(A+ xyT) = det(A)(1 + yTA−1x).

Proof.

2.3.2 Projections and direct sum
Definition 2.41. Let S, T ⊆ RU be linear subspaces. If S ∩ T = {0}, and RU = S + T , we say that RU is
the direct sum of S and T , and denote that by

RU = S ⊕ T.

Note that if RU = S ⊕ T , then for every x ∈ RU we have a unique pair (y, z) ∈ S × T such that
x = y + z. To see this, note that if there were two pairs, (y0, z0) and (y1, z1), whose sum is x, we could write
y0 + z0 = y1 + z1 and conclude that

y0 − y1 = z1 − z0

The LHS is in S, and the RHS is in T , so that both sides must be zero.
Since the direct sum gives for every vector x ∈ RU a unique element y ∈ S, this defines a function.

Definition 2.42. Let S, T ⊆ RU be linear subspaces such that RU = S ⊕ T . For every x ∈ RU , let
(y, z) ∈ S × T be such that x = y + z. The projection on S along T is the linear transformation given by

PS,Tx = y.

Note that if RU = S ⊕ T , then I = PS,T + PT,S , which ensures that

PT,S = I − PS,T (2.43)

Proposition 2.44. Let P : RU → RU . If P 2 = P , then P is the projection on Im(P) along Null(P).

Proof.

7

Given a linear subspace S, there are many T such that RU = S ⊕ T . Therefore, in general, there are
several projections on a single space S. This issue can be solved exploring the Euclidean structure of the
vector space.

Definition 2.45. Let S ⊆ RU be a subspace. The orthogonal projection on S, denoted PS , is the projection
on S along S⊥.

Proposition 2.46. Let S ⊆ RU be a subspace. Then P : RU → RU is the orthogonal projection on S if and
only if P 2 = P and PT = P .

Proof.

2.4 The Laplacian
Definition 2.47. Let D = (V,A) be a digraph. The head operator of D is the linear transformation given by

HD :=
∑
ij∈A

eje
T
ij .

Definition 2.48. Let D = (V,A) be a digraph. The tail operator of D is the linear transformation given by

TD :=
∑
ij∈A

eie
T
ij .

If a function f ∈ RA is interpreted as a “flow” defined on the arcs, the head operator measures how much
flow enters into each vertex per unit of time. Similarly, the tail operator measures how much flow leaves each
vertex per unit of time. We can combine both to look at the net result of each vertex.

Definition 2.49. Let D = (V,A) be a digraph. The divergence operator is the linear transformation given
by

BD := HD − TD.

The matrix BD will also be called the incidence matrix.

Note that, stretching the analogy further, if a function f ∈ RA is interpreted as a “flow” defined on the
arcs, the function (BDf) ∈ RV measures how much flow is accumulated in every vertex, or, equivalently, how
“sink-like” every vertex is.

Proposition 2.50. Let D = (V,A) be a digraph. Let BD ∈ RV×A denote its incidence matrix. If i is any
vertex, and a is any arc, then

(BD)i,a =


1, if a = ij for some j ∈ V,
−1, if a = ji for some j ∈ V,
0, otherwise.

(2.51)

Proof.

Definition 2.52. Let D = (V,A) be a digraph. The linear transformation given by BT
D will be called the

gradient operator of D.

Proposition 2.53. Let D = (V,A) be a digraph. Let i ∈ V be any vertex. Then

BT
D =

∑
ij∈A

eij
(
eTj − eTi

)
.

Proof.

The gradient of a function f on a directed graph is precisely the rate of change in the “directions” given
by the directed edges.

8

Definition 2.54. The Laplacian of a weighted digraph D = (V,A,w) is the matrix LD ∈ RV×V defined as

LD := HD Diag(w)BT
D.

Definition 2.55. Let G = (V,E,w) be any graph, and D = (V,A,w) be an orientation of G. The Laplacian
of a weighted graph G with respect to D is the matrix LG ∈ RV×V defined as

LG := BD Diag(w)BT
D.

Proposition 2.56. Let G = (V,E,w) be a weighted graph, and D = (V,A,w) be an orientation of G. Let
LG be the Laplacian of G with respect to D. Then

LG =
∑
ij∈E

wij(ei − ej)(eTi − eTj) =
∑
i∈V

ei
∑
j∈δ(i)

wij(ei − ej)T.

Proof.

Corollary 2.57. Let G = (V,E,w) be a graph. The Laplacian of G with respect to any orientation D is the
same.

Proof.

Theorem 2.58. Let G = (V,E,w) be a graph, and let D = (V,A,wD) be such that ij ∈ E ⇐⇒ (ij ∈
A and ji ∈ A) and that wD(ij) = wD(ji) = w(ij). Then

LD = LG.

Proof.

LD = HD Diag(wD)BT
D

= HD

∑
ij∈A

wD(ij)eij(e
T
j − eTi)


=

∑
i∈V

ei
∑

j∈δin(i)

eTji

∑
ij∈A

wD(ij)eij(e
T
j − eTi)


=
∑
i∈V

ei
∑

j∈δin(i)

wD(ji)(eTi − eTj).

But since j ∈ δin(i) ⇐⇒ j ∈ δ(i),

LD =
∑
i∈V

ei
∑
j∈δ(i)

wD(ij)(eTi − eTj).

As wD(ij) = w(ij), the proof is complete.

2.5 Harmonic Functions
Definition 2.59. Let G = (V,E) be a graph. A function f ∈ RV is harmonic at vertex i if

f(i) =
1

deg(i)

∑
ij∈E

f(j).

A vertex where f is not harmonic is called a pole of f .

9

2.6 Measure Theory
Definition 2.60. A σ-algebra on a set X is a collection Σ ⊆ 2X such that

(i) the empty set belongs to Σ;

(ii) the collection Σ is closed under complementation, that is, if E ∈ Σ, then X \ E ∈ Σ;

(iii) the collection Σ is closed under countable unions, that is, if (Ei)i∈N is a sequence in Σ, then⋃
i∈N

Ei ∈ Σ.

For practical reasons, the set X \ E is denoted by Ec.

Theorem 2.61. Let X be a set, and let {Σi : i ∈ I} be a collection of σ-algebras on X. The collection

ΣI :=
⋂
i∈I

Σi

is a σ-algebra on X.

Proof. By the definition of σ-algebra, the empty set must belong to Σi for every i ∈ I. Therefore, it also
belongs to ΣI .

Let E ∈ ΣI . Then, for every i ∈ I, the set E belongs to Σi, which implies that Ec ∈ Σi. But since this
holds for every i ∈ I, it follows that Ec ∈ ΣI .

Finally, let (Ek)k∈N be a sequence of sets in ΣI . Then, for every i ∈ I and k ∈ N, Ek ∈ Σi. Therefore, for
every fixed i ∈ I, the union

⋃
k∈NEk is in Σi. It follows that⋃

k∈I

Ek ∈ ΣI .

Definition 2.62. Let O ⊆ 2X . Define

σ(O) :=
⋂
{Σ : Σ is a σ-algebra on X,O ⊆ Σ}.

The collection O generates σ(O), and σ(O) is called the σ-algebra generated by O.

Theorem 2.63. Let O ⊆ 2X . The collection σ(O) is a σ-algebra on X.

Proof. Apply Theorem 2.61.

Note that the power set of X itself is always a σ-algebra. Therefore, there is at least one σ-algebra in
the intersection when σ(O) is being considered. Also, every σ-algebra Σ on X such that O ⊆ Σ will be a
superset of σ(O). For this reason, σ(O) is sometimes refered to as “the smallest σ-algebra containing O”.

Theorem 2.64. Let X be as set. Let σ : 22X → 22X

be the function defined by O 7→ σ(O).

(i) The function σ is extensive, that is, O ⊆ σ(O).

(ii) The function σ is monotone, that is, P ⊆ O =⇒ σ(P) ⊆ σ(O).

(iii) The function σ is idempotent, that is, σ(σ(O)) = σ(O).

It is important to contemplate the tool just defined. Given an arbitrary collection O of subsets of a set
X it is possible to associate it with a σ-algebra on X such that theorem 2.64 holds. This connection will
provide us not only with a tool to define new σ-algebras, but also to conclude things about a given one by
looking at a collection that generates it.

Now, to other practical matters. It must be noted that, just as much as a function must have a domain, a
σ-algebra must have a set on which it is built on. It is impossible not to carry around the given set X, just
as much as it is impossible not to carry around the domain of a function. Therefore, it is natural to “pack”
them together into a single concept. This package is what is called a measurable space.

10

Definition 2.65. A measurable space is an ordered pair (X,Σ) where Σ is a σ-algebra on X.

Definition 2.66. Let (X,ΣX) and (Y,ΣY) be measurable spaces. A function f : X → Y is called measurable
with respect to (w.r.t.) ΣX and ΣY if the preimage of every measurable set is measurable, that is, if
f−1 (ΣY) ⊆ ΣX .

Definition 2.67. Let (X,Σ) be a measurable space. A function µ : Σ → [0,+∞] is called a measure on
(X,Σ) if

(i) µ(∅) = 0,

(ii) µ is countably additive, that is, if (Ei)i∈N is a sequence of pairwise disjoint elements in Σ, then

µ

(⋃
i∈N

Ei

)
=
∑
i∈N

µ(Ei).

A measurable function f suggests a way to create a measure on (Y,ΣY) given a measure on (X,ΣX). The
suggestion is to define

ν := µ ◦ f−1.

Therefore, a measurable function is a way to move measures around different measurable spaces. But this
procedure demands a measurable space defined on its range. In some cases the function f : X → Y we want
to work with is clear, but the σ-algebra on Y is not. It then becomes desirable to have a way to define a
σ-algebra for Y in such a way that f is measurable.

Definition 2.68. A measure space (Ω,F ,P) is a probability space if P(Ω) = 1; in this case, P is called a
probability measure or probability distribution.

Definition 2.69. A random variable is a measurable function whose domain is a probability space.

11

Part I

Laplacian-Based Algorithms

12

Chapter 3

The Naive Algorithm

The Naive algorithm relies on Kirchhoff’s Matrix Tree Theorem, which relies on Cauchy-Binet Formula.

3.1 Cauchy-Binet formula
The main issue we address here is the fact that the determinant is a value defined on linear transformations

with same domain and image. We need to extend it, not only to talk about incidence matrices, but even
to define the determinant of submatrices. To simply state the Cauchy-Binet Formula formally, it will be
necessary to develop new concepts, that actually will play a crucial role in the proof of the Formula.

Lemma 3.1. Let U and V be finite sets. Let f : U → V and g : V → U be bijective functions. Then

sgn(fg) = sgn(gf).

Proof.

Lemma 3.2. Let U and V be finite sets. Let A : U × V → R be any function. Then∏
i∈U

∑
j∈V

A(i, j) =
∑

f : U→V

∏
i∈U

A(i, f(i)).

Proof. This demonstration can be done by induction on |U |.
If |U | = 0, then U = ∅. It is a (curious) vacuous truth that there is a unique function f : ∅→ V . Denying

either its existence or its uniqueness require an element in the empty set. Therefore, the RHS is the sum of
only one product, and this product is empty. Since the LHS is also an empty product, it follows that both
sides are equal to 1, and the base case holds.

Let then |U | > 0. Take any k ∈ U , and denote by U ′ := U \ {k}. Since for any function f : U → V it is
true that

1 =
∑
j∈V

[f(k) = j],

we can multiply the sum over functions by 1, factor the term with k, and obtain that

∑
f : U→V

∏
i∈U

A(i, f(i)) =
∑

f : U→V

∑
j∈V

[f(k) = j]

∏
i∈U

A(i, f(i))

=
∑
j∈V

A(k, j)

 ∑
f : U→V

[f(k) = j]
∏
i∈U ′

A(i, f(i))

 .

This restricts the sum over all the functions g : U ′ → V , and the induction hypothesis completes the proof:

∑
j∈V

A(k, j)

 ∑
g : U ′→V

∏
i∈U ′

A(i, g(i))

 =
∑
j∈V

A(k, j)

∏
i∈U ′

∑
j∈V

A(i, j)

 =
∏
i∈U

∑
j∈V

A(i, j).

13

Definition 3.3. Let U and V be finite sets. Let f : U → V be a function. The function matrix Pf ∈ RV×U
is defined as

Pf :=
∑
i∈U

ef(i)e
T
i .

Proposition 3.4. Let T,U, and V be finite sets. Let f : U → V and g : T → U . Then

PfPg = Pfg.

Proof. Note that, for every i ∈ T ,

PfPgei = Pfeg(i) = efg(i) = Pfgei.

Since the set {ei ∈ RT : i ∈ T} generates RV , this suffices to prove the desired equation.

Proposition 3.5. Let U and V be finite sets. Let f : U → V be a bijective function. Then

Pf−1 = PT
f .

Proof. For every i ∈ V , note that

(Pf)Tei =

∑
j∈U

ef(j)e
T
j

T

ei =
∑
j∈U

[f(j) = i]ej = ef−1(i) = Pf−1ei.

Since the set {ei ∈ RV : i ∈ V } generates RV , this completes the proof.

Function matrices represent a simple linear transformation between vector spaces, which uses the given
function to associate elements from the canonical basis. As a result, it is possible to simplify the products
quite easily. Let A ∈ RV×U , and φ : V → U . Then

(APφ)i,j = eTi APφej = eTi Aeφ(j) = Ai,φ(j).

Moreover, if φ is bijective,

(PφA)i,j = eTi PφAej = (PT
φ ei)

TAej = Aφ−1(i),j .

Note that given A and φ, there are actually two ways to have a matrix with the same row and column
set — APφ and PφA. The former describes a transformation on RV , and the latter a transformation on
RU . Moreover, it is possible to calculate both determinants, and the next proposition will ensure that both
calculations lead to the same result.

Proposition 3.6. Let U and V be finite sets. Let φ : V → U be a bijective function. If A ∈ RV×U , then

det(APφ) = det(PφA).

Proof. Lemma 3.1 implies that for any σ ∈ Sym(V),

sgn(σ) = sgn(σφ−1φ) = sgn(φσφ−1).

Therefore,

det(APφ) =
∑

σ∈Sym(V)

sgn(σ)
∏
i∈V

Ai,φσ(i)

=
∑

σ∈Sym(V)

sgn(φσφ−1)
∏
i∈V

Ai,φσ(i).

14

Since the mapping (σ 7→ φσφ−1) is a bijection from Sym(V) to Sym(U),

det(APφ) =
∑

τ∈Sym(U)

sgn(τ)
∏
i∈V

Ai,τφ(i)

=
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

Aφ−1(i),τ(i)

=
∑

τ∈Sym(U)

sgn(τ)
∏
i∈U

(PφA)i,τ(i)

= det(PφA).

The proof above demands a commentary. Let then f, g : U → V be bijective functions. Lemma 3.1 implies
that

sgn(f−1g) = sgn(fg−1).

The LHS is the sign of a permutation on V , and the RHS is the sign of a permutation on U . Proposition
3.6 translates this result to a different concept, since for A ∈ RV×U and φ : V → U , we just proved that

det(APφ) = det(PφA).

The LHS is the determinant of a linear transformation on RV , and the RHS is the determinant of a linear
transformation on RU .

Definition 3.7. Let U and V be finite sets. Let φ : V → U be a bijective function. Let A ∈ RV×U . The
determinant (with respect to φ) of A is defined as

det
φ

(A) := det(APφ).

Theorem 3.8. Let U and V be finite sets. Let φ : V → U be a bijective function. If A ∈ RV×U , then

det
φ

(A) = det
φ−1

(AT).

Proof. Several previous results come into play. Applying successively, Theorem 2.36, Proposition 3.5, and
Proposition 3.6, we have that

det
φ

(A) = det(APφ) = det(PT
φA

T) = det(Pφ−1AT) = det(ATPφ−1) = det
φ−1

(AT).

Theorem 3.9. Let U and V be finite sets. Let f : U → V and g : U → V be functions. Then

det(PT
f Pg) = [f, g injective][Im(f) = Im(g)] sgn(f−1g).

Proof. This proof will be broken into 3 steps:

(1) Prove that if det(PT
f Pg) is nonzero, then both f and g are injective.

(2) Prove that if det(PT
f Pg) is nonzero, then Im(f) = Im(g).

(3) Prove that if det(PT
f Pg) is nonzero, then it is equal to sgn(f−1g).

First, note that if f is not injective, then for any A ∈ RV×U , we have that det(PT
f A) = 0. To see why,

assume there are distinct i and j in U such that f(i) = f(j). Then Pfei = ef(i) = ef(j) = Pfej , so that
Pf (ei − ej) = 0. It follows that ei − ej is a nonzero vector in Null(Pf), and, therefore, in Null(ATPf). This
implies that det(ATPf) = 0, and Theorem 2.36 ensures that det(PT

f A) = 0.
The contrapositive of this result applied to both PT

f Pg and PT
g Pf implies step (1).

Now into the second step. Assume then that Im(g) 6⊆ Im(f). Then there exists i ∈ U such that for every
j ∈ U we have that f(j) 6= g(i). Therefore, for every j ∈ U ,

0 = eTf(j)eg(i) = eTj P
T
f Pgei.

15

In other words, ei ∈ Null(PT
f Pg), so that det(PT

f Pg) must be zero. Therefore, Im(g) 6⊆ Im(f) implies that
det(PT

f Pg) is zero.
The contrapositive of this result applied to both PT

f Pg and PT
g Pf implies step (2).

Into the final step. Let then f, g : U → V be such that det(PT
f Pg) is nonzero. Results (1) and (2) imply

that there is S ⊆ V such that Im(f) = Im(g) = S and that there exists g−1 : S → U inverse of g.
We also have that

(PT
f Pg)ij = eTi P

T
f Pgej = eTf(i)eg(j) = [f(i) = g(j)].

So that

det(PT
f Pg) =

∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

(PT
f Pg)i,σ(i) =

∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

[f(i) = gσ(i)] =
∑

σ∈Sym(U)

sgn(σ)[f = gσ].

Given the restrictions on f and g, it holds that f = gσ if and only if σ = g−1f , so that

det(PT
f Pg) = [f, g injective][Im(f) = Im(g)]

∑
σ∈Sym(U)

sgn(σ)[σ = g−1f]

= [f, g injective][Im(f) = Im(g)] sgn(g−1f).

The proof is complete since, if f and g are injective and have the same image, the function g−1f is invertible
and its inverse is f−1g, so that sgn(g−1f) = sgn(f−1g).

The theorem just proved goes further into the direction of relating determinants of linear transformations
and signs of permutations. Let f, g : U → V be functions. Note that Proposition 3.5 hints that PT

f is a
“substitute” for f−1, and the result just proved says that det(PT

f Pg) is a good generalization for sgn(f−1g),
since both are equal whenever the expression sgn(f−1g) makes sense, ie, f−1g exists and is invertible.

Proposition 3.10. Let U and V be finite sets. Let S ⊆ V . Let φ : S → U be a bijective function. Then

det
φ

(Pf [S,U]) = [f injective][Im(f) = S] sgn(φf).

Proof. Proposition 3.5 and Proposition 3.6 ensure that

det
φ

(Pf [S,U]) = det(Pf [S,U]Pφ) = det(PφPf [S,U]) = det(PT
φ−1Pf [S,U]).

The result then follows from Theorem 3.9, since φ is bijective, Im(φ−1) = S, and

det
φ

(Pf [S,U]) = [f injective][Im(f) = S] sgn(φf).

Theorem 3.11 (Cauchy-Binet, restricted version). Let U and V be finite sets. Let f, f : U → V be functions.
For every set S ∈

(
V
|U |
)
, let φS : S → U be a bijective function. Then

det(PT
f Pg) =

∑
S∈(V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U]).

Proof. Theorem 3.8 and Proposition 3.10 ensure that∑
S∈(V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U]) =
∑

S∈(V
|U|)

det
φS

(Pf [S,U]) det
φS

(Pg[S,U])

=
∑

S∈(V
|U|)

[f injective][Im(f) = S] sgn(φSf)[g injective][Im(g) = S] sgn(φSg)

= [f, g injective][Im(f) = Im(g)]
∑

S∈(V
|U|)

[Im(f) = S] sgn(φSf) sgn(φSg)

= [f, g injective][Im(f) = Im(g)] sgn(φIm(f)f) sgn(φIm(g)g).

16

Let S = Im(f). If f is injective, we have that sgn(φSf) = sgn(f−1φ−1
S), and it is possible to simplify the

expression on the nonzero case,

sgn(φSg) sgn(φSf) = sgn(f−1φ−1
S) sgn(φSg) = sgn(f−1g).

Note that Theorem 3.9 finishes the proof:∑
S∈(V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U]) = [f, g injective][Im(f) = Im(g)] sgn(f−1g) = det(PT
f Pg).

For given functions f, g : U → V , the summation on the theorem above is precisely to “try all” candidates
for Im(f) and Im(g). This will generalize into the Cauchy-Binet Formula, but it remains to relate the
determinant of arbitrary matrices with the determinant of function matrices.

Proposition 3.12. Let U and V be finite sets. Let A,B ∈ RV×U . Then

det(ATB) =
∑

f : U→V

det(PT
f B)

∏
i∈U

Af(i),i.

Proof. After applying the definition of the determinant, matrix product, and transpose, we obtain

det(ATB) =
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

(ATB)i,σ(i)

=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

∑
j∈V

AT
i,jBj,σ(i)

=
∑

σ∈Sym(U)

sgn(σ)
∏
i∈U

∑
j∈V

Aj,iBj,σ(i).

Now Lemma 3.2 produces the summation over functions needed. Then some factoring and collecting
finishes the proof:

det(ATB) =
∑

σ∈Sym(U)

sgn(σ)
∑

f : U→V

∏
i∈U

Af(i),iBf(i),σ(i)

=
∑

f : U→V

(∏
i∈U

Af(i),i

) ∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

Bf(i),σ(i)

=
∑

f : U→V

(∏
i∈U

Af(i),i

) ∑
σ∈Sym(U)

sgn(σ)
∏
i∈U

(PT
f B)i,σ(i)

=
∑

f : U→V

(∏
i∈U

Af(i),i

)
det(PT

f B).

Corollary 3.13. Let U and V be finite sets. Let A,B ∈ RV×U . Then

det(ATB) =
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

f Pg).

17

Proof. Note that suffices to apply Proposition 3.12 twice:

det(ATB) =
∑

f : U→V

(∏
i∈U

Af(i),i

)
det(PT

f B)

=
∑

f : U→V

(∏
i∈U

Af(i),i

)
det(BTPf)

=
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

g Pf)

=
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

f Pg).

Theorem 3.14 (Cauchy-Binet). Let U and V be finite sets. For every set S ∈
(
V
|U |
)
, let φS : S → U be a

bijective function. Let A,B ∈ RV×U . Then

det(ATB) =
∑

S∈(V
|U|)

det
φ−1
S

(AT[U, S]) det
φS

(B[S,U]).

Proof. First, it is useful to give an alternative expression for detφS
(B[S,U]).

Theorem 2.36 and Proposition 3.6 allow the manipulations of the matrices, and Proposition 3.5 the
relation between PφS

and its transpose, so that

det
φS

(B[S,U]) = det(B[S,U]PφS
) = det(Pφ−1

S
BT[U, S]) = det(BT[U, S]Pφ−1

S
).

Corollary 3.13 provides the sum over functions, and once again Theorem 2.36, Proposition 3.6, and Proposition
3.5 simplify the determinant, so that

det
φS

(B[S,U]) = det(BT[U, S]Pφ−1
S

) =
∑

g : U→S

(∏
i∈U

Bg(i),i

)
det(PT

g Pφ−1
S

) =
∑

g : U→S

(∏
i∈U

Bg(i),i

)
det
φS

(Pg).

Finally, Proposition 3.10 ensures that the summation range can be extended over every function g : U → V ,
with detφS

(Pg[S,U]) selecting the ones whose image is S, so that

det
φS

(B[S,U]) =
∑

g : U→V

(∏
i∈U

Bg(i),i

)
det
φS

(Pg[S,U]).

The path here is clear. Use Corollary 3.13 to write the product in terms of function matrices, then use
Theorem 3.11 and the equality just proved to finish the proof:

det(ATB) =
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

)
det(PT

f Pg)

=
∑

f : U→V

∑
g : U→V

(∏
i∈U

Af(i),i

)(∏
i∈U

Bg(i),i

) ∑
S∈(V

|U|)

det
φ−1
S

(PT
f [U, S]) det

φS

(Pg[S,U])

=
∑

S∈(V
|U|)

∑
f : U→V

(∏
i∈U

Af(i),i

)
det
φS

(Pf [S,U])
∑

g : U→V

(∏
i∈U

Bg(i),i

)
det
φS

(Pg[S,U])

=
∑

S∈(V
|U|)

∑
f : U→V

(∏
i∈U

Af(i),i

)
det
φS

(Pf [S,U]) det
φS

(B[S,U])

=
∑

S∈(V
|U|)

det
φS

(A[S,U]) det
φS

(B[S,U]) =
∑

S∈(V
|U|)

det
φ−1
S

(AT[U, S]) det
φS

(B[S,U]).

18

From a computational perspective, Theorem 3.14 is interesting because it reduces the sum of a exponential
amount of determinants into a single one. This will be explored first to give a determinant formula to count
the amount of spanning trees of a graph, which is exponential. Then, since determinants can be calculated in
polynomial time, this will give the first polynomial time algorithm for sampling spanning trees.

3.2 Matrix Tree Theorems
This section is devoted to prove Tutte’s Matrix Tree Theorem (3.23), and use it to prove Kirchhoff’s

result (3.24) as a corollary. Both results arise from an interplay between linear algebra and combinatorics.
Therefore, to proper understand the material presented here, we must observe how properties from one world
manifest themselves into another. For this reason, most theorems here presented are algebraic conclusions
made from combinatorial hypotheses. The results build up into Theorem 3.19 and Proposition 3.22, that
actually reach back and give information about the digraph used to define the matrices involved. Combining
both results with Theorem 3.14 we obtain Tutte’s Matrix Tree Theorem.

Definition 3.15. Let D = (V,A) be a digraph. Let i, j ∈ V . A function f ∈ RA is a flow from i to j, or an
ij-flow, if

BDf ∈ R+(ej − ei).

Theorem 3.16. Let D = (V,A) be a digraph. Let G = (V,E) be its underlying graph. If there is a walk of
positive length in G from vertex i to vertex j, then there exists an ij-flow.

Proof. The proof is by induction on the lenght of the walk. Let (u0, . . . , um) be a ij-walk.
If m = 0, then x = 0 suffices.
If m > 1, denote by k the vertex u1 and apply the induction hypothesis to (u1, . . . , um). Therefore, there

is y ∈ RA such that
BDy = ej − ek.

Either ik or ki is in A. In the former, x = y + eik is a solution. In the latter, x = y − eki suffices.

Theorem 3.16 is a formal statement of the idea that, if there is walk between two vertices, it is possible to
establish a flow between them — basically pushing the flow through the walk.

Proposition 3.17. Let D = (V,A) be a digraph. Let f ∈ RV . Then BT
Df = 0 if and only if f(i) = f(j) for

every i and j in the same component of the underlying graph of G.

Proof. Let f be constant in every component of G. Let ij ∈ A. Since i and j are on the same component,

(BT
Df)eij = f(j)− f(i) = 0.

Since ij was arbitrary, it follows that BT
Df is zero.

Now let f ∈ RV be a function such that BT
Df = 0. Let i and j be distinct vertices on the same component.

Then, there is an ij-walk of positive length. Theorem 3.16 ensures that there exists a x ∈ RA such that
BDx = ej − ei. Therefore

f(j)− f(i) = (ej − ei)Tf = (BDx)Tf = xTBT
Df = xT(BT

Df) = xT0 = 0.

Just like in calculus, the gradient of a function being zero is related to it being constant on the connected
parts of its domain. From a linear algebra perspective, Proposition 3.17 describres the nullspace of BT

D

according to its underlying graph.

Null(BT
D) = span({1C : C is a component of D’s underlying graph.}).

Proposition 3.18. Let D = (V,A) be a digraph with |V |−1 arcs. Let i ∈ V , and φ : A→ {i}c be a bijective
function. If G is not connected, then

det
φ

(BD[{i}c, A]) = 0.

19

Proof. Since det(BD[{i}c, A]) = det(BT
D[A, {i}c]), it suffices to find a nonzero element of Null(BT

D[A, {i}c]).
Let C 6⊆ V be the component of i. Proposition 3.17 ensures that BT

D1V \C = 0.
Note that, since i 6∈ V \ C, we have that

0 = BT
D1V \C = (BT

D[A, {i}c])(1V \C [{i}c, 1]) = BT
D[A, {i}c]1V \C .

The proof is done, since 1V \C is nonzero because G is not connected.

Proposition 3.19. Let D = (V,A) be a digraph with |V | − 1 arcs. Let G be its underlying graph. Let
i ∈ V . Let φ : A→ {i}c be a bijective function. Then detφ(BD[{i}c, A])2 = [G is a tree].

Proof. If detφ(BD[{i}c, A])2 = 1, in particular detφ(BD[{i}c, A]) 6= 0, and the contrapositive of Proposi-
tion 3.18 implies that G is connected. Since G has |V | − 1 edges, it must be a tree.

Now let G be a tree. If |V | = 1, the matrix BD[{i}c, A] becomes empty. According to our definition, the
determinant is an empty product, and therefore the statement holds.

If |V | > 1, let j be a vertex distinct from i which is a leaf. Let k be its unique neighbor, and assume
that jk ∈ A — the other case is analogous. Let ψ : A \ {jk} → {i, j}c be a bijective function. The Laplace
expansion along the j-th row, as given in Equation 2.38, ensures that, for some natural r,

det
φ

(BD[{i}c, A]) = (−1)r det
ψ

(BD[{i, j}c, A \ {jk}]),

det
φ

(BD[{i}c, A])2 = (−1)2r det
ψ

(BD[{i, j}c, A \ {jk}])2.

The induction hypothesis on the graph G − j ensures that the square of the determinant on the right
hand side is 1, and concludes the proof.

Proposition 3.19 is an algebraic criterion to determine if the underlying graph of a digraph is a tree. It
bring us close to characterize arborescences. We continue on this path with the following theorem.

Proposition 3.20. Let D = (V,A) be a digraph with |V |−1 arcs. Let i ∈ V . Let φ : A→ {i}c be a bijective
function. Then detφ(HD[{i}c, A]) 6= 0 implies that∣∣δin(j)

∣∣ = [j 6= i].

Proof. If j is a vertex with indegree 0, then ej is in Null(HT
D), and det(HD[{i}c, A]) = 0.

Therefore, if the determinant is nonzero, every vertex different from i has indegree at least 1. But since
there are |V | − 1 arcs, every vertex different from i has indegree precisely 1.

Proposition 3.21. Let D = (V,A) be an i-arborescence. Let φ : A→ {i}c be a bijective function. Then

det
φ

(HD[{i}c, A]) = det
φ

(BD[{i}c, A]).

Proof. Let D = (V,A) be a minimal counterexample, ie, a minimal i-arborescence such that both determinants
differ. It is impossible for |V | to be one, since in such case BD = HD = [0].

Theorem 2.27 ensures there is a vertex distinct from i with outdegree zero. Let j be it. The row
corresponding to j in HD[{i}c, A] has only one nonzero entry, and its value is precisely 1. Let kj ∈ A be
the corresponding entry. Also, let ψ : A \ {kj} → {i, j}c be a bijective function. Then the Laplace expansion
along the j-th row, as given in Equation 2.38, ensures that

det
φ

(HD[{i}c, A]) = det
ψ

(HD[{i, j}c, A \ {kj}]).

The same argument ensures that

det
φ

(BD[{i}c, A]) = det
ψ

(BD[{i, j}c, A \ {kj}]).

But this implies that the graph D − j is also a counterexample, contradicting the minimality of D.

20

Proposition 3.22. Let D = (V,A) be a digraph with |V |−1 arcs. Let i ∈ V . Let φ : A→ {i}c be a bijective
function. Then

det
φ

(HD[{i}c, A]) · det
φ

(BD[{i}c, A]) = [(V,A) is an i-arborescence].

Proof. If (V, S) is not an i-arborescence, then Theorem 3.19 and Proposition 3.20 ensure that the product is
zero.

Therefore the determinant is nonzero only when (V, S) is an i-arborescence. But in such case, Theorem 3.19
and Proposition 3.21 ensures that the product is one.

Theorem 3.23 (Tutte’s Matrix Tree Theorem). Let D = (V,A,w) be a weighted digraph. Let i ∈ V . Then

det(LD[{i}c, {i}c]) =
∑

F∈TD(i)

∏
e∈F

we.

Proof. For every S ∈
(

A
|V |−1

)
, let φS : S → {i}c be bijective functions. First note that Theorem 3.14 ensures

that, for every fixed S ∈
(

A
|V |−1

)
, we have

det
φS

(Diag(w)[S,A]BT
D[A, {i}c]) = det(Diag(w)[S, S]) det

φS

(BT
D[S, {i}c]).

Moreover, Theorem 2.34 and Theorem 3.14 ensure that

det(LD[{i}c, {i}c]) = det((HD Diag(w)BT
D)[{i}c, {i}c])

=
∑

S∈(A
|V |−1)

det
φ−1
S

(HD[{i}c, S]) det
φS

((Diag(w)BT
D)[S, {i}c])

=
∑

S∈(A
|V |−1)

det
φ−1
S

(HD[{i}c, S]) det
φS

(Diag(w)[S,A]BT
D[A, {i}c])

=
∑

S∈(A
|V |−1)

det
φ−1
S

(HD[{i}c, S]) det(Diag(w)[S, S]) det
φS

(BD[{i}c, S])

=
∑

S∈(A
|V |−1)

det
φ−1
S

(HD[{i}c, S]) det
φS

(BD[{i}c, S]) det(Diag(w)[S, S])

=
∑

S∈TD(i)

det(Diag(w)[S, S]) =
∑

S∈TD(i)

∏
e∈S

we.

Proposition 3.22 is used in the change of summation index.

Theorem 3.24 (Kirchhoff’s Matrix Tree Theorem). Let L be the laplacian of a weighted graphG = (V,E, ψ,w).
Let i ∈ V . Then

det(L[{i}c, {i}c]) =
∑
F∈TG

∏
e∈F

we.

Proof. Let G = (V,E,w) be weighted graph. Let D = (V,A,wD) be such that

ij ∈ E ⇐⇒ (ij ∈ A and ji ∈ A),

and wD(ij) = wD(ji) = w(ij). Then Theorem 2.58 ensures that LG = LD. Therefore, Theorem 3.23, implies
that

det(LG[{i}c, {i}c]) = det(LD[{i}c, {i}c]) =
∑

S∈TD(i)

∏
e∈S

wD(e).

Note that, by construction of D, for every S ∈ TD(i), if F ⊆ E is such that (V, F) is the underlying graph
of (V, S), then

∏
e∈F w(e) =

∏
e∈S wD(e). Therefore, remains only to change the summation index.

In other words, to prove the statement suffices to prove that for every T ∈ TG and for every i ∈ V , there
is a unique F ∈ TD(i) such that the underlying graph of (V, F) is (V, T).

21

This can be done by induction on |V |.
If |V | = 0, the thesis vacuously holds. If |V | = 1, then both TG and TD(i) are equal to {∅}.
Let then |V | > 1. Let T ∈ TG and let j be a leaf of (V, T) which is distinct from i. Let k be the only

vertex adjacent to j, ie, let kj ∈ T . Note that T \{kj} ∈ TG[{j}c]. Therefore, the induction hypothesis applies,
and there is a unique F ′ ∈ TD[{j}c] such that ({j}c, T \ {kj}) is the underlying graph of ({j}c, F ′). Then,
F := {kj} ∪ F ′ is an i-arborescence of D whose underlying graph is (V, T). Note that, since j 6= i, then we
have that kj ∈ F in every i-arborescence F of D, to ensure that

∣∣δin(j)
∣∣ = 1. This, along with the fact that

F ′ is unique, implies the uniqueness of F .

3.3 The Algorithm
Definition 3.25. Let D = (V,A, ψ,w) be a weighted digraph, and let i ∈ V . Denote

Φ(D, i) := det(LD[{i}c, {i}c]).

Proposition 3.26. Let D = (V,A, ψ,w) be a weighted digraph, and let i ∈ V . Then

Φ(D, i) =
∑

T∈TD(i)

∏
a∈T

w(a).

Proof. Apply Theorem 3.23 to the definition of Φ(D, i).

The following propositions serve to relate the problem of sampling an arborescence in a digraph with the
same problem in a smaller digraph. They hint at both the recursive definition of the algorithm, and at its
inductive proof of correctness.

Proposition 3.27. Let D = (V,A, ψ,w) be a weighted digraph, let i ∈ V and let a0 ∈ δout(i) not be a loop.
Let S := {T ∈ TD(i) : a0 ∈ T}. Then φ : TD/a0(a0)→ S given by φ := (T 7→ T ∪ {a0}) is bijective.

Proof. Let f : V → V \ {i, j} ∪ {a0} be defined as

f |V \{i,j} = (x 7→ x),

f(i) = a0,

f(j) = a0.

Moreover, define f̂ := (ij 7→ f(i)f(j)). Then, according to the definition of contraction, we have that

D/a0 = (f(V), A \ {a0}, f̂ψ, w|A\{a0}).

Let then a ∈ A \ {a0} be any arc. Note that f̂ψ(a) = a0k if and only if ψ(a) ∈ {ik, jk}. This, along with
the fact that

∣∣δin(a0)
∣∣ = 0 for every T ∈ TD/a0(a0), ensures that

∣∣δin(i)
∣∣ =

∣∣δin(j)
∣∣ = 0 in (V, T). We can

then conclude that the graph (V, T ∪ {a0}) satisfies the indegree condition for being an i-arborescence, i.e.,
that

∣∣δin(j)
∣∣ = [i 6= j].

Note that since ψ(a0) = ij for distinct i and j, we have both that |T | = |V | − 2 and |f(V)| = |V | − 1.
Therefore, to finish the proof, suffices to show that given T ⊆ A \ {a0}, the digraph (f(V), T, f̂ψ) has a
connected underlying subgraph if and only if (V, T ∪ {a0}, ψ) has a connected underlying subgraph. We
proceed in this direction.

Suppose T ⊆ A \ {a0} is such that (f(V), T, f̂ψ) has a connected underlying subgraph. Therefore, for
every vertex k in f(V) \ {a0}, there is a walk, in the underlying graph, between a0 and k. Let a be the first
arc in this walk.

Note that a is such that either f̂ψ(a) ∈ {a0l, la0}, for some vertex l. Either way, the underlying graph
has an edge il or an edge jl. Therefore, there is either a walk from i to k or from j to k in the underlying
graph of (V, T, ψ). Since ψ(a0) = ij, it follows that (V, T ∪ {a0}, ψ) has a connected underlying subgraph.

Suppose now that (V, T ∪ {a0}, ψ) has a connected underlying subgraph. Note then that the underlying
graph of (V, T, ψ) must have two components, such that one contains the vertex i and the other contains the
vertex j. Therefore, in the underlying graph, for every vertex k ∈ V \ {i, j}, there must be either a walk from
i to k, or a walk from j to k. Th proof is finished, since this implies that there is a walk from a0 to k in the
underlying graph of (f(V), T, f̂ψ).

22

Proposition 3.28. Let D = (V,A, ψ,w) be a weighted digraph, let i be a vertex in it, and let a0 ∈ δout(i)
not be a loop. Then

Φ(D, i) = w(a) Φ(D/a0, a0) + Φ(D − a0, i).

Proof. Let T ∈ TD(i). Note that,
1 = [a0 ∈ T] + [a0 6∈ T].‘

This observation, along with Theorem 3.24 and Propositions 3.27, ensure that

det(LG[{i}c, {i}c]) =
∑

T∈TD(i)

∏
e∈T

w(e)

=
∑

T∈TD(i)

([a ∈ T] + [a 6∈ T])
∏
e∈T

w(e)

=
∑

T∈TD(i)

[a ∈ T]
∏
e∈T

w(e) +
∑

T∈TD(i)

[a 6∈ T]
∏
e∈T

w(e)

= w(a)

 ∑
T∈TD(i)

[a ∈ T]
∏

e∈T\{a}

w(e)

+

 ∑
T∈TD−a

∏
e∈T

w(e)


= w(a)

 ∑
T∈TD/a

∏
e∈T

w(e)

+

 ∑
T∈TD−a

∏
e∈T

w(e)


= w(a) det(LD/a[{i}c, {i}c]) + det(LD−a[{i}c, {i}c]).

Loops are indeed a special case. Given a weighted digraph D = (V,A, ψ,w), for any vertex i ∈ V and loop
a0 ∈ δout(i), note that the function that maps i into a0 and fixes every other vertex is a graph isomorphism
between D − a0 and D/a0. Moreover, no arborescence contains a0, so that

Φ(D, i) = Φ(D − a0, i) = Φ(D/a0, a0),

contrary to Proposition 3.28.
Loops aside, Proposition 3.28 gives the probability for an edge to belong to a random arborescence. This is

the key idea in our first algorithm. However, to proper formalize the argument, we must handle a technicality
and a question about the nature of randomness itself.

First things first. It is impossible for a computer, a deterministic tool, to produce randomness. The
approach will be to embrace such a restriction, not to fight against it. The algorithm will actually be defined
as a random variable, whose definition relies on a suitable “randomness source”. This is akin to how a
programmer could just call a rand function. In that context, there is little interest on what rand does. In
this context, there is no immediate interest on the random variable that poses as “randomness source”, since
it is a purely measure theoretical structure.

Definition 3.29. Let A be a finite set. A finite randomness source is a set of measurable functions
Xa : Ω→ [0, 1] such that for every a ∈ A and for every interval (b, c) in [0, 1], we have that

P(Xa ∈ (b, c)) = c− b,

and such that, for distinct a0, a1 ∈ A and measurable sets R,S ⊆ [0, 1], we have that

P(a0 ∈ R, a1 ∈ S) = P(a0 ∈ R) · P(a1 ∈ S).

However, to define a random variable is to define a function. In order to do so, it will be convenient to
have aditional information on the arcs of the input digraph. This aditional information is a total order in it.
Note that to require a total order on the set of arcs is by no means a restriction.

Finally, before going to the definition, a last remark is in place. For clarity, the cases should be read like a
if-else chain. More precisely, the order of the cases is relevant, and the algorithm outputs the first which
satisfies the described condition.

23

Definition 3.30. Let D = (V,A, ψ,w) be a weighted graph. Let i ∈ V be a vertex in it. Let (A,≤) be a
totally ordered set. The naive algorithm is the function A(D, i) : Ω→ TD(i) ∪ {⊥} defined as

A(D, i)(ω) :=


⊥, if Φ(D, i) = 0, (error case)

∅, if δout(i) = ∅, (base case)

A(D − a, i), if Xa(ω) ≤ Φ(D−a,i)
Φ(D,i) , (drop case)

A(D/a, a) ∪ {a}, otherwise. (take case)

where a := min δout(i).

The appearence of ⊥ on the definition reflects the fact that it is possible for the algorithm to receive a
digraph with many arborescences and to fail to output one of them. This will not actually be a problem, but
for now, ⊥ must be carried around.

Theorem 3.31. Let D be a weighted digraph, and let i be a vertex in it. Then

1. The function A(D, i) is a random variable;

2. For every T ∈ TD(i), it holds that

P(A(D, i) = T) =
1

Φ(D, i)

∏
e∈T

w(e);

3. If D has at least one i-arborescence, then P(A(D, i) = ⊥) = 0.

Proof. First, note that if D has no i-arborescences, then Φ(D, i) = 0. Therefore,

Ω = {A(D, i) = ⊥},

since the algorithm will always go through error case, regardless of the input ω. As the measurable sets
form a σ-algebra, it follows that {A(D, i) = ⊥} is measurable. In such a case, (1), (2) and (3) hold.

Let then D = (V,A, ψ,w) be a weighted digraph with at least one i-arborescence. We proceed by proving
that for every T ∈ TD(i),

(i) The set {A(D, i) = T} is measurable, and

(ii) P(A(D, i) = T) = 1
Φ(D,i)

∏
e∈T w(e).

We proceed by induction on |A|.
If A = ∅, since TD(i) is not empty, it follows that TD(i) = {∅}. In such a case, note that

Ω = {A(D, i) = ∅},

since the naive algorithm will output ∅ regardless of the input ω ∈ Ω. Since the measurable sets are a
σ-algebra, this implies that {A(D, i) = ∅} is measurable. Also, since it is a probability space, its measure
must be 1, which is equal to the RHS of (ii), since Φ(D, i) = 1 and the empty product “collapses” into 1.

Let then A be nonempty, and let T ∈ TD(i) be any i-arborescence. Since T ∈ TD(i) and w > 0, it follows
that Φ(D, i) > 0 and that δout(i) is not empty. In such a case, let a be the minimum element of δout(i).

Observe that we can now assume that the algorithm is not on error case, since Φ(D, i) > 0, nor on
base case, since δout(i) 6= ∅.

Note that if a is a loop, then
Φ(D, i) = Φ(D − a, i),

so that the simple fact that Xa(ω) ≤ 1 for every ω ∈ Ω implies that the algorithm is in drop case. The
inductive hypothesis then ensure that (i) and (ii) hold.

If a is not a loop, there are two cases to consider, depending on whether a is in T or not.

24

If a ∈ T , then the set {A(D, i) = T} is a subset of {a ∈ A(D, i)}. But for every ω ∈ Ω such that
a ∈ A(D, i)(ω), we are dealing with take case, so that

{A(D, i) = T} = {A(D, i) = T, a ∈ A(D, i)} =

{
A(D/a, a) = T \ {a}, Φ(D − a, i)

Φ(D, i)
< Xa

}
.

The last set in the above equation is measurable because it is the intersection of two measurable sets. The first,
has its measurability ensured by the induction hypothesis, and the second, by the fact that Xa : Ω→ [0, 1] is
measurable. Note that Proposition 3.27 is used to ensure that T \ {a} is a a-arborescence in D/a.

We then have that

P(A(D, i) = T) = P
(
A(D/a, a) = T \ {a}, Φ(D − a, i)

Φ(D, i)
< Xa

)
= P(A(D/a, a) = T \ {a}) · P

(
Φ(D − a, i)

Φ(D, i)
< Xa

)
since the Xa are independent

= P(A(D/a, a) = T \ {a}) ·
(

1− Φ(D − a, i)
Φ(D, i)

)
= P(A(D/a, a) = T \ {a}) · w(a)

Φ(D/a, a)

Φ(D, i)
by Proposition 3.28

=

 1

Φ(D/a, a)

∏
e∈T\{a}

w(e)

 · w(a)
Φ(D/a, a)

Φ(D, i)
by induction hypothesis

=
1

Φ(D, i)

∏
e∈T

w(e).

If a 6∈ T , then the set {A(D, i) = T} is a subset of {a 6∈ A(D, i)}. But for every ω ∈ Ω such that
a 6∈ A(D, i)(ω), we are dealing with drop case, so that

{A(D, i) = T} = {A(D, i) = T, a 6∈ A(D, i)} =

{
A(D − a, i) = T,Xa ≤

Φ(D − a, i)
Φ(D, i)

}
.

The last set on the above equation is the intersection of two measurable sets, the first with its measurability
assured by the induction hypothesis, and the second because Xa : Ω→ [0, 1] is a measurable.

Therefore,

P(A(D, i) = T) = P
(
A(D − a, i) = T,Xa ≤

Φ(D − a, i)
Φ(D, i)

)
= P(A(D − a, i) = T) · P

(
Xa ≤

Φ(D − a, i)
Φ(D, i)

)
since the Xa are independent

= P(A(D − a, i) = T) · Φ(D − a, i)
Φ(D, i)

=

(
1

Φ(D − a, i)
∏
e∈T

w(e)

)
· Φ(D − a, i)

Φ(D, i)
by induction hypothesis

=
1

Φ(D, i)

∏
e∈T

w(e).

This finishes the proof of (i) and (ii). We know focus back in the original statement of the theorem. We
have only showed that the pre image of every arborescence is measurable. Remains to show that A(D, i) is
indeed a random variable (1), and that (3) holds.

To show that A(D, i) is a random variable, remains only to show that the preimage of ⊥ is measurable.
Note then that

{A(D, i) = ⊥} = Ω \

 ⋃
T∈TD(i)

{A(D, i) = T}

 ,

25

and the RHS is the complement of a finite union of measurable sets, so that it is indeed measurable.
Finally, using Proposition 3.26, we have that

P(A(D, i) = ⊥) = 1−
∑

T∈TD(i)

P(A(D, i) = T)

= 1−

 1

Φ(D, i)

∑
T∈TD(i)

∏
e∈T

w(e)


= 1−

(
Φ(D, i)

Φ(D, i)

)
= 0,

which demonstrates (3) and finishes the proof.

If we let ⊥ represent a division by zero error, the pseudocode for the algorithm can be written as follows:
function Sample(D, i)

Let D = (V,A, ψ,w).
if δout(i) = ∅ then return ∅.
Let a ∈ δout(i), and let p← Φ(D − a, i)/Φ(D, i).
Let x be a uniform random variable in the interval [0, 1].
if x ≤ p then return Sample(D − a, i).
else return {a} ∪ Sample(D/a, a).

26

Chapter 4

The Harvey-Xu Algorithm

4.1 The Moore-Penrose pseudoinverse
Remember that, for a given linear subspace S ⊆ RU , the matrix PS is the unique orthogonal projection

along S.
This section is based on the results discussed on projections and on the following result.

Lemma 4.1. Let U be a finite set. Let A : RU → RU . Then

(a) A = PIm(A)A,

(b) A = APNull(A)⊥ .

Proof. To prove (a), suffices to note that for every x ∈ RU , we have that Ax ∈ Im(A), so that PIm(A)Ax = Ax.
To prove (b), note that RU = Null(A) ⊕ Null(A)⊥. Therefore, for every x ∈ RU , there are unique

(y, z) ∈ Null(A)×Null(A)⊥ such that x = y + z. Then

Ax = A(y + z) = Ay +Az = Az = APNull(A)⊥x.

Definition 4.2 (Moore-Penrose pseudoinverse). Let A : RU → RV . A (Moore-Penrose) pseudoinverse is a
linear transformation A† : RV → RU such that

(a) AA† = PIm(A),

(b) A†A = PIm(A†).

Note that the definition of the pseudoinverse is symmetric on A and A†, so that A is the pseudoinverse of
A†. Also, properties (a) and (b) of the definition, together with Lemma 4.1 imply

AA†A = PIm(A)A = A, (4.3)

A†AA† = PIm(A†)A
† = A†. (4.4)

Proposition 4.5. Let A : RU → RV , and let A† : RV → RU be a pseudoinverse of A. Then

(a) Null(A†) = Im(A)⊥,

(b) Im(A†) = Null(A)⊥.

Proof. It is possible to conclude that Null(AA†) = Null(A†) from this seemingly pointless computation

Null(A†) ⊆ Null(AA†) ⊆ Null(A†AA†) = Null(A†).

But this implies (a), since AA† = PIm(A), so that the nullspace of AA† is Im(A)⊥.
Similarly,

Null(A) ⊆ Null(A†A) ⊆ Null(AA†A) = Null(A)

ensures that Null(A) = Null(A†A), which implies (b), since Null(A†A) = Null(PIm(A†)) = Im(A†)⊥.

27

Proposition 4.6. Let A : RU → RV . If A has a pseudoinverse, it is unique.

Proof. Let B and C be two pseudoinverses of A. Proposition 4.5 implies that Im(B) = Im(C), so that

B = BAB = BPIm(A) = BAC = PIm(B)C = PIm(C)C = C.

We recall that a linear transformation is injective if and only if its nullspace is {0}. Therefore, for any
linear transformation A : RU → RV , its restriction on Null(A)⊥ is injective. It is then possible to define its
inverse, (

A
∣∣
Null(A)⊥

)−1

: Im(A)→ Null(A)⊥.

Since it is the inverse of a linear transformation, it is a linear transformation, and we have that(
A
∣∣
Null(A)⊥

)(
A
∣∣
Null(A)⊥

)−1

= IIm(A). (4.7)(
A
∣∣
Null(A)⊥

)−1 (
A
∣∣
Null(A)⊥

)
= INull(A)⊥ . (4.8)

This procedure is general, and allows us to prove the existence of the pseudoinverse.

Proposition 4.9. Let A : RU → RV be any linear transformation. A has a pseudoinverse, and it holds that

A† =
(
A
∣∣
Null(A)⊥

)−1

PIm(A).

Proof. Since the RHS of the equation is defined for every A, and since the pseudoinverse is unique, suffices to

prove that the RHS is a pseudoinverse of A. Denote by B the matrix
(
A
∣∣
Null(A)⊥

)−1

. Since B is surjective

in Null(A)⊥ and PIm(A) is surjective in Im(A), we have that

Im(BPIm(A)) = Im(B) = Null(A)⊥.

Lemma 4.1 and Equation 4.7 are the only tools necessary here:

BPIm(A)A = BAPNull(A)⊥ = B(A|Null(A)⊥)PNull(A)⊥ = INull(A)⊥PNull(A)⊥ = PNull(A)⊥ ,

ABPIm(A) = (A|Null(A)⊥)BPIm(A) = IIm(A)PIm(A) = PIm(A).

Theorem 4.10. Let A ∈ RV×U . Then it holds

(a) Im(ATA) = Im(AT), and

(b) Null(ATA) = Null(A).

Proof. To say that Im(A) = Null(AT)⊥ is to say that A is surjective in Null(AT)⊥, so that Im(ATA) = Im(A).
Similarly, to say that Null(AT) = Im(A)⊥ is to say that AT is injetive when restricted to Im(A), so that

Null(ATA) = Null(A).

Proposition 4.11. Let A : RU → RV be any linear transformation. Then

(AT)† = (A†)T.

Proof. First, note that Im(A†) = Null(A)⊥ = Im(AT). Moreover, Im(A) = Null(A†) = Im((A†)T).
We can then show that (A†)T satisfies both conditions on the pseudoinverse definition of AT:

AT(A†)T = (A†A)T = A†A = PIm(A†) = PIm(AT),

(A†)TAT = (AA†)T = AA† = PIm(A) = PIm((A†)T).

Proposition 4.12. Let A ∈ RV×U . Then it holds that

(a) A† = (ATA)†AT.

28

(b) A† = AT(AAT)†.

Proof. Let B = (ATA)†AT. First note that AB is a projection:

ABAB = A(ATA)†ATA(ATA)†AT = A(ATA)†AT = AB.

Also, Proposition 4.11 ensures that AB is orthogonal, since

(AB)T = BTAT = ((ATA)†AT)TAT = A(ATA)†AT = AB.

Remains to show that Im(AB) = Im(A). Note that Lemma 4.1 and Theorem 4.10 imply that

A = APNull(A)⊥ = APIm(ATA) = APIm((ATA)†) = A(ATA)†ATA,

This is enough for the image equality, since

Im(A) = Im(A(ATA)†ATA) ⊆ Im(A(ATA)†AT) = Im(AB) ⊆ Im(A).

Therefore, Im(A) = Im(AB), so that AB is the orthogonal projection on Im(A). Remains to show that
BA is the orthogonal projection on Im(A†). But this is quite simpler: just note that the definition of the
pseudoinverse of ATA, Theorem 4.10 and Proposition 4.5 imply that

BA = (ATA)†ATA = PIm(ATA) = PIm(AT) = PIm(A†).

This finishes the proof of (a). To prove (b), just note that (a) applied to the transpose of A ensures that

(A†)T = (AT)† = (AAT)†A,

and then, applying Proposition 4.11, we have that

A† = ((AAT)†A)T = AT(AAT)†.

Unfortunately, it is not always the case that (AB)† = B†A†. One of the notable cases when this holds is
the following.

Proposition 4.13. Let A ∈ RV×U and B ∈ RU×T . If A has full column rank and B has full row rank, then

(AB)† = B†A†.

Proof. To say that A has full column rank is the same as to say that A is injective, ie, that Null(A) = {0}.
But then, Theorem 4.10 and Theorem ?? gives that

Im(ATA) = Im(AT) = Null(A)⊥ = {0}⊥ = RU .

Therefore, ATA is surjective. The same reasoning gives that

Null(ATA) = Null(A) = {0}.

Therefore, ATA is injective, and, then, invertible.
Since B has full row rank, BT has full column rank, and the argument above ensures that BBT is also

invertible. Applying the conveninent equations from Proposition 4.12, it follows that

B†A† = BT(BBT)−1(ATA)−1AT.

First, note that ABB†A† = A(ATA)−1AT, a matrix product that is both orthogonal, and also a projection.
Moreover, using the fact that (ATA)−1 is invertible, Theorem 4.10 and the fact that B is surjective, we have
that

Im(A(ATA)−1AT) = Im(AAT) = Im(A) = Im(AB).

Similarly, observe that B†A†AB = BT(BBT)−1B, a matrix product that is both orthogonal and also a
projection. Moreover, using the fact that (BBT)−1 is invertible, Theorem 4.10 and the fact that A is injective,
Theorem ?? and Proposition 4.5, we have that

Im(BT(BBT)−1B) = Im(BTB) = Im(BT) = Null(B)⊥ = Null(AB)⊥ = Im((AB)†).

29

We finish this section by actually calculating the pseudoinverse of a matrix that will be useful in our next
section.

Example 4.14. Let V be a finite set, let i ∈ V , and let A ∈ RV×{i}c be given by

A[{i}c, {i}c] = I,

A[i, {i}c] = −1T.

In other words, assuming the first rows are indexed by {i}c, let

A =

[
I

−1T

]
. (4.15)

We wish to calculate A†. First, note that for x ∈ R{i}c ,

Ax = 0 ⇐⇒

[
x

−1Tx

]
= 0 ⇐⇒ x = 0.

So that Null(A) = {0}.
Moreover, for y ∈ RV , we have that y ⊥ 1 if and only if there is x ∈ R{i}c such that

y =

[
x

−1Tx

]
=

[
I

−1T

]
x.

So that Im(A) = 1
⊥.

First, we prove that 1
n11

T is the orthogonal projector on span1. It is orthogonal, and since(
1

n
11

T

)(
1

n
11

T

)
=
1
T
1

n2
11

T =
1

n
11

T,

it is a projection. Finally, note that x is fixed by 1
n11

T if and only if it is a multiple of 1:(
1

n
11

T

)
x = x ⇐⇒ x =

(
1
Tx

n

)
1.

Therefore, Equation 2.43 ensures that I− 1
n11

T is the orthogonal projector on the orthogonal complement
of span1.

With this information, Equation (a) of the definition of Moore-Penrose pseudoinverse can be written as[
I

−1T

] [
A†[{i}c, {i}c] A†[{i}c, i]

]
=

[
A†[{i}c, {i}c] A†[{i}c, i]
1
TA†[{i}c, {i}c] 1

TA†[{i}c, i]

]
=

[
I − 1

n11
T − 1

n1

− 1
n1

T 1− 1
n

]
,

which implies that

A†[{i}c, {i}c] = I − 1

n
11

T,

A†[{i}c, i] = − 1

n
1
T,

or, assuming the first columns are indexed by {i}c,

A† =
[
I − 1

n11
T − 1

n1

]
.

30

4.2 Effective Resistances as Marginal Probabilities
Proposition 4.16. Let G = (V,E, ψ) be a connected graph. Let e0 ∈ E be such that |ψ(e0)| = 2. Denote
by i and j the elements of ψ(e0). Then

(ei − ej)TL†G(ei − ej) = (LG[{i}c, {i}c]−1)jj .

Proof. First, note that by indexing the first rows and the first columns by {i}c, the equality LG1 = 0 turns
into [

LG[{i}c, {i}c] LGei

−eTi LG (LG)ii

][
1

1

]
=

[
0

0

]
.

Solving this system for both LGei and (LG)ii, we arrive at

LG =

[
LG[{i}c, {i}c] −LG[{i}c, {i}c]1
−1TLG[{i}c, {i}c] 1

TLG[{i}c, {i}c]1

]
=

[
I

−1T

]
LG[{i}c, {i}c]

[
I −1

]
.

Note that since G is connected, it has at least a spanning tree, so that det(LG[{i}c, {i}c]) is nonzero, and,
therefore, LG[{i}c, {i}c] has both full row and full column rank. Also, since

[
I − 1

]
is surjective, it has full

row rank, and its transpos has full column rank. Therefore, Proposition 4.13 applied twice ensures that

L†G =
[
I −1

]†
LG[{i}c, {i}c]−1

[
I

−1T

]†
.

From Example 4.14 we have that[
I

−1T

]†
(ei − ej) =

[
I − 1

n11
T − 1

n11
T
] [−ej

1

]
= −ej .

Therefore,

(ei − ej)L†G(ei − ej) =

[I

−1T

]†
(ei − ej)

T

LG[{i}c, {i}c]−1

[I

−1T

]†
(ei − ej)


= (−ej)T(LG[{i}c, {i}c]−1)(−ej) = (LG[{i}c, {i}c]−1)jj .

Proposition 4.17. Let G = (V,E, ψ) be a connected graph. Let e0 ∈ E be such that |ψ(e0)| = 2. Denote
by i and j the elements of ψ(e0). Then

Φ(G/e0)

Φ(G)
= (LG[{i}c, {i}c]−1)jj .

Proof. Note that
LG = LG−e0 + (ei − ej)(ei − ej)T,

so that
LG−e0 [{i}c, {i}c] = LG[{i}c, {i}c]− ejeTj .

Applying Lemma 2.40, we then have that

Φ(G− e0) = Φ(G)(1− (LG[{i}c, {i}c]−1)jj).

However, Φ(G) = Φ(G/e0) + Φ(G− e0), and we conclude that

Φ(G/e0)

Φ(G)
= 1− Φ(G− e0)

Φ(G)
= 1− (1− (LG[{i}c, {i}c]−1)jj) = (LG[{i}c, {i}c]−1)jj .

31

Both propositions lead into a way to calculate the probability of an edge to belong to the tree output of
A(G) using the pseudoinverse instead of a determinant. This is interesting because it only demands 4 entries
of the pseudoinverse matrix to be known, and our next algorithm will explore this.

Theorem 4.18. Let G = (V,E, ψ,w) be a weighted connected graph. Let e0 ∈ E be such that |ψ(e0)| = 2.
Denote by i and j the elements of ψ(e0). Let A(G) : Ω→ TG be a random variable such that for every T ∈ TG

P(A(G) = T) =
1

Φ(G)

∏
e∈T

w(e).

Then
P(e0 ∈ A(G)) = w(e0)(ei − ej)TL†G(ei − ej).

Proof. Apply both propositions just proved:

P(e0 ∈ A(G)) = w(e0)
Φ(G/e0)

Φ(G)
= w(e0)(LG[{i}c, {i}c]−1)jj = w(e0)(ei − ej)TL†G(ei − ej).

4.3 The Harvey and Xu algorithm

32

Part II

Random Walk-Based Algorithms

33

Chapter 5

Random Walks

5.1 Markov Chains
A stochastic process in a probability space (Ω,B,P) is a function X on a totally ordered set T such that

Xk is a random variable on Ω for every k ∈ T , all of which take values in the same measurable space (V,M).
Call V the state space of the stochastic process. A stochastic process X with T = N is a Markov chain if

P(Xk+1 = xk+1 |Xk = xk, . . . , X0 = x0) = P(Xk+1 = xk+1 |Xk = xk) (5.1)

for every k ∈ N and x : {0, . . . , k + 1} → V such that both conditional probabilities are well defined, i.e., such
that P(Xk = xk, . . . , X0 = x0) > 0. Condition (5.1) is sometimes called the Markov property.

Let X be a Markov chain. For each k ∈ N, the transition matrix at time k is the matrix Pk : V × V → R
defined by (Pk)uv = P(Xk+1 = v |Xk = u) for each (u, v) ∈ V × V . If Pk = P` for each k, ` ∈ N, the Markov
chain is time-homogeneous or stationary, and the common value P : V × V → R is the transition matrix.

5.2 Arrival time and cover time
Lets take a look at the random variables taking values at R∗. The first interesting property is the following:

Theorem 5.2 (Infimum of random variables). Let (Xk)k∈N be a sequence of random variables from the
measurable space (Ω,Σ) to R ∪ {-∞,+∞}. We have that the function Y : ω → R∗ defined by

Y (ω) = inf
k∈N

Xk(ω)

is a random variable.

Proof. Using that it is enough to prove the measurability of a function on a generator set of the sigma algebra
in the image, it is enough to demonstrate that, for any α ∈ R, the set Y −1([−∞, α)) is measurable. Note
that, for any such set,

Y −1([−∞, α)) ={ω ∈ Ω : Y (ω) < α}

=

{
ω ∈ Ω : inf

k∈N
Xk(ω), α

}
={ω ∈ Ω : ∃k ∈ N : Xk(ω) < α}

=
⋃
k∈N

X−1
k ([−∞, α))

(5.3)

Therefore the set is a countable union of sets that are measurable since every Xk is a random variable,
and the [−∞, α) are measurables.

34

With this tool in hand, given a markov chain (Xk)k∈N, I can define the random variables (Yk)k∈N, for any
fixed natural k,

Yk(ω) =

{
k, if Xk(ω) = j

+∞, otherwise
(5.4)

where j ∈ V is a fixed point in the state space of Xk.
It is possible to state that for any k ∈ N, Yk is measurable, by applying the result on the measurability of

function with countable image, and noticing that

Yk(Ω) = {k,+∞}

Therefore, the arrival time Aj : Ω→ R∗ can be defined as

Aj(ω) := inf
k∈N

Yk(ω)

which is measurable by the result proven on the begining of this section.

35

Chapter 6

The Aldous-Broder Algorithm

36

