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Abstract

Ever since the early days of computer history, image generation have been one of the
largest fields of interest for both industry and academia, therefore some of the biggest ad-
vances of computer science have been made in computer graphics. While technology has
evolved to a point where it’s possible to produce images that have almost no difference to
real life photos, the generation such graphics still requires a big amount of time, which hints
a desire of speeding up the process of creating photorealistic images. The objective here was
to develop a renderer that simulate light transport physics in real time, or in other words,
generating photorealistic images really fast. To reach those goals, the Raytracing algorithm
was implemented using the Vulkan API and Physically Based Rendering (PBR) techniques,

which resulted in high quality images being produced in milliseconds.
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Chapter 1
Introduction

Rendering is nothing more than the art of making math visible. That phrase tell much
about computer graphics as a whole, since it is simple, straightforward and anyone can un-

derstand at it’s core, but being simple doesn’t always means easy.

Following those characteristics very closely is one of the first algorithms in computer
graphics, the Raytracing. It can be used for photorealistic image generation, since it descri-
bes the light behavior in the real world, but is very expensive to calculate, making it the

central algorithm of this document.

The objective here is to develop a Physically Based Real-Time Raytracer, a renderer
capable of generating physically accurate images in real time, while using the raytracing

algorithm. Taking a closer look at this title can help in the future:

e Raytracer!- that’s the algorithm that commands how to get the scene data to an image;
it’s job is to determine which parts of the scene contribute to each pixel by casting

rays that intersect with objects over and over again.

e Real-Time - that means it’s generating images really fast, to the point where one
could interact with the environment and see the changes take part; in other words,

each image is generated in a blink of an eye;

e Physically Based - although the raytracing algorithm simulates the light behavior,
things are not so simple in real life: light has energy and interacts differently with
different materials, bouncing all over until it reaches the eyes of an observer. Modeling
something that considers all the involved variables is almost impossible, therefore te-
chniques that are based on the laws of physics are used to resemble an accurate light

behavior.

!The central algorithm used is actually in a middle ground between the classic raytracing and what is
called Path Tracer, that is a variant of raytracing. Both algorithms work by casting rays against the scene
geometry, but while the original raytracing algorithm traces rays from the contact point to light sources,
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1.1 About the technology

Since speed is a core part of this implementation, being able to control and fine tune
each part of the program execution is a must. For that reason, a permissive graphics API
was needed, and Vulkan, the OpenGL “successor”, fulfilled this requirement. This APT re-
moves almost all the work from the hands of a hardware driver and put it in the hands of
the application programmer, giving almost full control over the graphics card (GPU). That
control comes with a much more explicit implementation and increased responsibility for
the programmer, requiring a deep knowledge of the problem at hand, the inner workings of

a GPU, and computer graphics in general.

Besides the control, Vulkan also provides a common ground between the classic graphics
pipeline and the GPU general parallelism, those being everything needed by this renderer,
since raytracing is a highly parallelizable task and displaying images on the screen is the

best way to evaluate a real time application.

1.2 Text structure

This text is divided in two parts describing the background needed to understand the

system implementation, followed by the conclusion:

e Part 1: Theory - here some of the involved concepts like the raytracing algorithm, PBR

theory, and common computer graphics aspects are explained in more depth.

e Part 2: Implementation - here the most important parts of the implementation are
described; it’s shown how the code and data is organized, how the base renderer works,

and how it all come together in the end.

determining if that point is lit, a Path Tracer cast those secondary rays in random directions recursively,
until one of those rays reach a light source.



Chapter 2
Theory

Even though computer graphics (CG) is one of the largest fields in computer science, most
people are afraid of even getting close to it. A common belief has been created where only
the most talented programmers can dare to approach such arcane art and, while there is a lot

of math and optimization techniques, the truth is that most concepts are easy to understand.

With that in mind, this chapter is designed to explain some basic concepts used in the
renderer while assuming almost no knowledge in CG. That said, even if the reader do have
a background in computer graphics, it may be worth taking a look at those topics as they

describe how the implementation will proceed afterwards.

2.1 Raytracing

When talking about computer graphics, most people think about pretty images on a
screen, like in a video game. Usually those images are generated from various types of data

going through a set of steps (pipeline) that produce what is seen on the screen.

The way of generating images used by this renderer defines a raytracer pipeline. But
before talking about this topic, it’s important to have a basic understanding of how graphics
are generated in the far most common graphics pipeline, as almost all graphics cards are

designed to make the best use of that model.

2.1.1 Classic Rendering Pipeline

The graphics pipeline works on sets of geometric data, most commonly sets of trian-
gles, submitted to the GPU as vertices, points in space defining position and some other
attributes. Inside the pipeline, the data in those vertices can be manipulated in many ways,

being repositioned, multiplied and even generating new geometry data. The important part
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is that, after those transformations, a process called rasterization takes part. That step pro-
duces fragments, things that are basically pixels (tiny little pieces of an image) with some
more information. Fragments are then submitted to the (usually) most expensive part of the

graphics pipeline, where the final pixel color is calculated.

The rasterization process is important because of the way it works: given the geometry
info, the rasterizer determines which pixels that geometry can affect. But more than that,
the rasterizer can determine the info residing inside a shape for free, which is a big thing

since only the information about vertices is passed to the pipeline.

Having a basic understanding of the graphics pipeline makes it easier to see why raytra-

cing is a slow process.

2.1.2 How raytracing works

The raytracing algorithm describes the behavior of light in a intuitive way, so it’s useful

to have a simple understanding of how light travels through the real world.

Say someone is in a room looking through a window, and outside is a field with a tree
and a blue sky. Obviously that person cannot see what is behind that tree, but why? The
reason is because there is no light rays coming from behind the tree that reach the observer’s
eyes. Everything visible from a particular point in a scene is a result of light being emitted

(like a candle flame) or reflected by an object.

Back to the window, the sun is casting rays of light that reach the scene objects, like
the tree, and some of that light is reflected in the direction of the observer, making the tree
visible. All that is possible because light travels in a straight direction, and after hitting
something, part of that light is reflected. The color that is seen when the ray reaches the

observer is a result of the light object interaction, where part of the light is absorbed.

That’s pretty much what the raytracing algorithm does, but there is a catch: when a
light ray is casted from a light source, it probably will never reach the observer’s eyes. Light
is reflected in many directions when it reaches an object, so only a very small part of those

rays will contribute to what someone see in a scene.

The solution here is to follow the reverse path: cast rays from the observer to the scene.
That’s possible because of a pretty useful property about reflections: if the incoming ray is
swapped by the outgoing ray with inverse direction, the new outgoing ray will be the original

incoming ray with inverse direction. With that, the algorithm just work with rays that are
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visible, bypassing all those rays that never reach the observer.

Putting it all together in a simple form of the algorithm, what raytracing does is cast
rays from each pixel in the image, intersecting those rays with the scene geometry; if an
intersection was found, a color is calculated for that point, and then more rays, the reflected
ones, are casted into the scene, now starting from the contact point. This process repeats
until a given limit of ray bounces, but as each new ray can contribute to that pixel’s color,

this limit usually have a big impact on the final image quality.

2.1.3 Classic Rendering Pipeline vs Raytracing

Understanding both raytracing and the graphics pipeline makes it easy to see why the
latter is faster: while both can operate over the same data and use the same equations to

calculate a pixel color, the work of finding that pixel is much more expensive on a raytracer.

With the raytracer, it’s necessary to make several ray intersection tests for each ray exi-
ting the pixel, finding which piece of geometry (if any) is contributing to the final color, and
then which point of that geometry will be used in the calculations. All that only for primary

rays; the whole process is repeated for each batch of reflected rays.

With rasterization in the graphics pipeline, the pixels that will be affected are easily
determined, as the process runs in a per geometry basis, so there is no cost in finding which

points in the scene contribute to the final pixel color.

That said, rasterization is not perfect; many desired visual effects like transparency and
shadows are harder to obtain using that pipeline, while coming with little effort when using
raytracing. Not only that, but since raytracing works by simulating the light behavior, the
resulting image usually have a much higher quality, presenting visual effects like soft sha-

dows, global illumination and reflections without changing one line of the algorithm.

2.1.4 Ray intersection tests

When using a raytracer, the main job of the algorithm is to find which part of the scene
contribute to a pixel’s color. For that, it’s necessary to define what is a ray and how it can
intersect scene geometry. Notice that some math fundamentals may be necessary to fully

understand this section.
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A ray r is a line segment that have an origin and a direction, so it’s defined by:
r:=o-+td

o,de R} teR

Where
e 0 is the origin; a point in space
e ( is the direction; a vector

e tis a scalar used to uniquely represent any point in the ray’s line

For the renderer described by this document, the geometry used by the scene is composed

of spheres and planes, defined below.

Spheres are sets of points that reside in a fixed distance from an origin. For easier

calculations, this origin is treated as the vector (0, 0, 0):
s:==|p|—r=0

peR*reR

Where
e p is a point in the sphere surface
e |p| is the length of vector p; the distance from p to the origin

e 1 is the sphere radius

The intersection between a ray and a sphere can be calculated by using the ray equation
as the input for the sphere equation, which results in a quadratic equation with 0, 1 or 2

real values for t representing where the ray intersects the sphere:
t*(d-d) +2t(o-d)+(0-0—71)=0

A=4(o-d)?*—4(d-d)(o-0—7)

—(0-d) VA
(d-d)

Where the - represents the dot product and A determines in how many places the ray

t =

intersects the sphere:
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e If A <0, then the ray does not intersect the sphere
e If A =0, then the ray intersects the sphere in exactly one point!
e If A > 0, then the ray intersects the sphere in two points

Some simplifications can be made, since d usually is a unity vector, which means the dot

product d - d always equals 1:

A=4(0-d)?*—4(0-0—7)

t=—(o-d) VA

Planes are sets of vectors generated from a point that are perpendicular to a normal
vector; in other words, given an origin for a plane 7 and a normal vector, every point in that

plane respects the following equation:

T=@p—c)-n=

p,c,n € R3

Where
e p is a point in the plane
e c is the origin of the plane
e n is the vector normal to the plane

Notice that any point in that plane can be used as the origin.

The intersection for planes follows the same process as with spheres: it’s just a matter

of using the ray formula inside the plane equation:

(o+td—c) - n=0

(0—¢c)-n

=Ta

!Even though when A equals 0 there is a collision, the system will not consider it as one. The reason is
that when the program is calculating the color contribution of a point, the cosine of the angle between the
ray and the normal at collision point is used, and in the case where A equals 0 this angle equals I, so it’s

2
cosine equals 0 and can be discarded.
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Here, if d-n equals 0, then the ray is parallel to the plane and thus there’s no intersection?.

For both spheres and planes, if an intersection results in t<0, then the contact point

found is behind the ray and can be discarded.

2.2 Physically Based Rendering (PBR)

Even though raytracing can simulate how light moves, there are some neat physical pro-

perties that are usually overlooked by the algorithm’s most basic form.

When dealing with light in the real world, each interaction between a ray and the en-
vironment is modified by a bunch of variables, resulting in very different visuals. Those

variables are what define from which material an object is made of.

The goal here is to explain the properties of light and materials used by the renderer to

produce physically accurate images.

Now, simulating all physical properties of light is near impossible, so a set of techniques
was developed in order to make the rendering of physically plausible scenes relatively fast.
It works by basing it’s calculations at the theory behind light interactions, cutting corners
in some places for speed, which results in a Physically Based Rendering set of techniques,
or PBR for short.

Bear in mind that most topics covered by this section barely touches the surface of what
is behind PBR, with only the most crucial parts being exposed in order to explain of how
the renderer calculates colors. Besides that, it’s recommended to follow the topics in the

presented order, as later topics use some previously defined concepts.

This section is based on Chapter 7 of Akenine-Moller et al. (2008), the introduction to
PBR by Hoffman (2015), and the PBR series by de Vries.

2.2.1 Light and Color

As said in Section 2.1.2, an observer can only see something if light is reaching it’s eyes,
be it reflected or emitted from some object. For that reason, the following paragraphs try to
explain what light is and how it’s related to colors, consequently being a fundamental part

of understanding how PBR works.

2There is the case where o belongs to the plane, so it’s technically a collision, but it’s not considered as
one. The reason is the same used when discarding ray-sphere collisions where A equals 0.
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Radiometry

While light can be treated as a ray, which is the whole principle behind raytracing, there
is something more behind it. Keeping it simple, light is a kind of electromagnetic radiation,

meaning it’s a bunch of photons that move around caring energy.

For the purposes needed by this document, it’s not so important to know what photons
are as it is to know how they behave, as this item focus in properties of light needed to
calculate colors. That said, one aspect that cannot be overlooked is that photons are both

particles and waves.
While it’s safe to treat photons as only being particles (as is the case when using light
as rays), knowing their wavelength (or frequency), a wave property, is needed for future

calculations.

Frequency, measured in Hertz, and wavelength, measured in meters, are related by:

> o

>
Il
SN

Where

e v is the wave frequency
e ) is the wavelength

e c is the speed of light

The photon frequency is what define if something is visible to human eyes, since it’s only
possible to visually perceive wavelengths ranging approximately from 380 to 780 nanome-
ters, the so called wvisible spectrum, where lower frequencies waves turns to be red and higher

ones blue.

Another aspect of frequency is its direct relationship with the photon energy, the basic

unity in radiometry, measured in Joules. That relationship is given by:

Q= hv

Where

e () is the photon energy

e h is the Planck’s constant
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From that, several quantities are derived, but two are more important for the renderer im-

plementation: irradiance and radiance.

Irradiance, measured in watts per square meters, describes how much photon energy is
passing through an area per second. That’s what is used when calculating how much light

is coming in and going out of an object.

Radiance, measured as watts per steradians per square meters, is the aspect of light
perceived by the eye, measuring how much illumination there is in a ray (or more specifi-
cally, around a solid angle in a given direction), and therefore directly related to the color

produced by the renderer.

For the sake of clarity, solid angles, measured by steradians, can be though as being 3D
angles: while radians measure 2D angles that can be represented as part of a circumference,
a steradian measure 3D region that can be represented as part of a sphere surface. That said,

the renderer simplifies this by simulating a very small solid angle that can be treated as a ray.

Notice that irradiance can be derived from radiance since radiance is irradiance per ste-
radian. That is common other radiometric quantities, making radiance the most relevant
quantity for calculations. Speaking of radiometric quantities, measuring electromagnetic ra-

diation is exactly the job of radiometry.

Colorimetry

For calculations, radiance is the ideal quantity to be worked. But the way humans perceive
light has to be considered in order understand how colors are represented when generating

images.

Colorimetry is the field responsible for describing and evaluating how humans perceive

light, or colors to be more specific.

In the real world, every light is composed of a set of photons. The distribution of wave-
lengths from those photons forms the spectrum of a given light, and that basically defines

which color is perceived by the eyes, but there is a catch.

The human eye perceives light because of three different types of receptors, each one
"reading"a different range of wavelengths. The catch is that light’s spectrum is composed
by an infinity of wavelengths distributed in a way that (appears to) result in a color, but
with that limitation in humans eyes, many different spectra can be perceived as the same

color.
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For that reason, any visible spectrum can be represented by only three values®and, not
by coincidence, each pixel in a monitor is represented using three values: red, green and blue.
Keep in mind though that each monitor have limitations and different configurations, so it’s

almost impossible to produce images that will look the same regardless of the hardware.

2.2.2 Surfaces

Most interesting things in life happen when there is some sort of interaction, and with
light that interaction happens when a ray hits an object’s surface. This section is the core
part of PBR, explaining what happens when light hits something and how that is used by

the renderer when dealing with all sorts of materials.

Microfacet theory

Every object is made of some material that has characteristic physical properties. One
very common set of properties to most people defines how each object feels when touched,
e.g. how fast something changes its temperature, or how slippery it is. Those characteris-

tics are perceived from the object’s surface, the place of contact when light reaches an object.

Just for a second, imagine a metal knife with a unpolished wooden handle sitting on a
desk. When light hits that knife, the metal part gets some bright spots reflecting the light’s
shape. Looking at the wooden part, it’s possible to tell the wood color and some details like
the wood grains, but no bright spots can be seen. One of the reasons for that behavior is
that the wood’s surface is rougher than metal’s surface, or equivalently the metal’s surface

is smoother than wood’s surface.

Taking a closer look at both wood and metal surfaces, it’s possible to see something like
tiny patches (flat surfaces) connected to each other. The difference is that in the wood those
patches are messy, having a big variation in their orientation when compared to neighbor
patches. Looking at the metal, the patches are more behaved, with little variations in neigh-

boring orientations.

To see how that affects the visual appearance of a material, imagine that each of those
patches is a mirror. The difference in alignment then is visible when light reaches the surface,
since it’s reflected based on the patches orientation: when the patches are aligned, more of

the reflected light will follow the same path, resulting in a mirror-like behavior, and when

3These three values are hypothetic, proposed by the CIE (Commission Internationale d’Eclairage) in
order to represent any visible spectrum. In real life, when using three specific spectra (light rays) with
different intensities, sometimes it’s not possible to represent a color, as the combination of intensities resulting
in that color can include negative values, meaning that the light rays with such values would be added to
the desired color instead of being added with the other light rays.
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the patches are not so aligned, light is scattered all around.

This idea is exactly what the Microfacet Theory describes, receiving that name because
each of those patches is actually in a microscopic scale, bigger than visible wavelength, but
still smaller than a pixel. The patches are treated like perfect mirrors and receive the name

microfacets, being responsible for how light will behave based on the surface’s roughness.

If the reader still finds the concept of a surface’s roughness confusing, it may help to
think of some materials or take a look around, observing that when things feel rougher on

the touch, they are usually not shiny.

Although treating a surface like a mirror on the microscopic level can describe how re-
flections work in different materials, when light hits an object it’s actually divided in two
parts: the immediately reflected part, called specular reflection, and the refracted part, that

needs some explanation.

As said in the previous section, light transports energy, a quantity that according to the
laws of physics is always conserved, implying that light leaving a surface can never have
more energy than light coming to that surface. Naturally, as light is divided when reaching

a surface, it’s energy is divided between the reflected and refracted parts.

When light is refracted, it starts to bounce around under the surface, having part of its
energy absorbed (being transformed in heat or some other kind of energy). The thing is that
the non-absorbed part of light keeps bouncing, and since it has less energy, its color starts to
change. Eventually some of the bouncing rays may find their way out of the surface, resul-
ting in the called diffuse light color of that material. That behavior of light when bouncing
under a surface and then find its way out is called Subsurface Scattering, and is responsible

for the characteristic color of most materials.

The result from light-surface interaction then comes from the combination of the specu-
lar and diffuse components turning in some color output, or in terms that will help soon,

outgoing radiance.

For rendering purposes, since most part of diffuse light is scattered in a region smaller
than the pixel being calculated, it is possible to simplify the subsurface scattering by treating

all the outgoing rays as leaving the surface from a single point.
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BRDFs

Although light-surface interaction results in colors, an observer can perceive a scene in
completely different ways just by moving the light sources. With that, it’s safe to assume
that the way a surface outputs radiance (i.e. how it reflects light) depends on where both
the observer and light sources are located in relation to the object being observed. That

dependency is actually a function called Bidirectional Reflectance Distribution Function, or

BRDF for short.

BRDFs are what make PBR shine. They work by taking two inputs: the direction of light
coming to a point in the surface and the direction from that point to the observer. Their job
is to tell how much radiance should go in the viewer direction based on how much irradiance
is coming from the light source. The resulting formula used, that assumes no area lights in

the scene, is given by:
L(v)
E max(0, cos )

l,veR3 0 el0,n7]

f(lvv) =

Where
e [ is the direction to the light

v 1s the direction to the observer

e [(v) is the outgoing radiance in the observer’s direction

E' is the incoming irradiance of the light source in a plane perpendicular to [

6 is the angle between [ and the surface’s normal at the contact point

With that, it’s easy to see how the BRDF can be used to calculate the outgoing radiance of
a surface in a scene:

L(v) = f(l,v) E max(0, cos 0)

There are many different BRDFs used in computer graphics, but the one chosen for this
implementation is called Cook-Torrance BRDF, as it is one of the most used in real-time

rendering applications.

The Cook-Torrance BRDF consists of two parts, one for dealing with the diffuse compo-
nent and the other for the specular component. The first, dealing with light that is refracted,
uses the Lambertian reflectance function multiplied by a coefficient determining how much of

incoming light goes to the diffuse component. The second, dealing with reflected light, uses
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the Cook-Torrance specular BRDF, also multiplied by a coefficient, this time representing

the reflected amount of light.

Putting both together results in:

f(la U) - fLambertian(la U)kd + fCook—Torrance(la U)ks

Where

e k. is the coefficient for specular contribution

e L, is the coefficient for diffuse contribution

The Lambertian reflectance function distributes radiance equally in a hemisphere, and
when used by the renderer, it gets the albedo (natural color) of a surface to calculate the

diffuse (illuminated color) component as follows:

fLambertian(la U) = -
s

Where
e ¢ is the albedo color

If the reader have some experience with computer graphics, that equally distributed
reflection may resemble something like the Blinn-Phong model, but the key here is the
division by pi, used to guarantee the energy conservation in future calculations.

The Cook-Torrance specular BRDF is where things get really interesting. That function

is defined by:
F(l,h)G(l,v,h)D(h)

d(n-1)(n-v)
n,h € R?

fCookaorrance(la U) =

Where

e h is the half vector; it’s the vector that is halfway between [ and v
e 1 is the normal vector of the surface

e [(I,h) is the Fresnel Reflectance Equation

e G(l,v,h) is the Geometry Function

e D(h) is the Normal Distribution Function

Each of those functions deserve a dedicated explanation as they are basically used as
presented inside the renderer, but before that, here is how the Cook-Torrance BRDF looks

like:
F(l,h)G(l,v,n)D(h)

4(n-1)(n-v)

Fv) = Skt .,
T
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Fresnel Reflectance Equation

The Fresnel Reflectance Equation describes the ratio between reflected and refracted
light exiting the surface depending on both incoming light direction and surface normal.
The effects of that equation can easily be seen in the real world, for example, with water:
when looking down at a lake, it’s possible to see through the water, but when observing it

from some angle, like looking near the opposite lake shore, the water acts like a mirror.

With that equation, each material has a characteristic behavior depending on the inci-
dent light angle, but all of them rapidly start to act like mirrors for angles greater than (/)
70°. For angles lower than that there is not much variation, so the amount of light reflected

at the incident angle of 0° is used for calculations, being represented by Fj.

Besides that, while describing the behavior of each kind of material escapes the scope
of this document, it’s important to say that usually materials are divided into two groups*:

metals and dielectrics.

Metals are conductors: they are highly reflective, usually with Fy > 0.5 in all spectra,
have characteristic specular colors, and have no diffuse color, as they absorb all the refracted

light. Iron, gold, and silver are some examples of materials that fall into this category.

Dielectrics are non-conductors: they are not very reflective, usually with Fy ~ 0.04, have
dark, non-colored (gray scale) specular colors, and have diffuse color, coming from the sub-

surface scattering. Plastic, chalk, and rubber are some examples that fall into this category.

Since dielectrics do not have much variation in the F{), with almost all of them having
Fy € [0.02,0.2] and more commonly with Fy € [0.04,0.045], it’s normal to use a fixed value
of Fy = 0.04 for all materials in that group. That, combined with metals not having diffuse
colors, form a fundamental part of what is called the Metallic Workflow, commonly used in

many modern renderers.

The most common formula used in rendering when dealing with the Fresnel Reflectance
Equation is the Schilick Approximation. It gives fairly accurate values while being cheap to

calculate, making it ideal for this implementation. The formula is given by:
FSchilick(F07 la n) = FO + (1 - FO)(l - (l ’ n))

It’s easy to see that the amount of reflection goes up as the angle between the light

and surface normal gets closer to 90°, at which point the equation converges to 1, i. e. all

4There is third group for semiconductors, but as they have somewhat weird behaviors and are rarely used
in rendering, it’s common to not deal with them at all
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incoming light is reflected.

Normal Distribution Function

The Normal Distribution Function, or NDF for short, is responsible for describing the
distribution of specular light exiting a surface in relation to the half vector. To understand

what that means, it’s easier to know how reflections are calculated.

When a reflected vector resulting from a ray reaching a surface is calculated, it’s done

so by using the surface normal at that point with the following formula:
r=n(l-n)—2l

That function results in the reflected vector r but, although not so costly, it’s possible
to make it better by using one simple relation: when the view vector is aligned with the
reflected vector, the normal vector is aligned with the half vector. With that, calculations
depending on both reflected and view vectors can generally be replaced by equations using
both normal and half vectors. That is better because calculating the half vector is cheaper

than calculating the reflected one, plus the half vector is used as input by the NDF.

This substitution is not perfect, as the difference between the normal and half vectors
does not escalates linearly in relation to the difference between the reflected and view vec-

tors, but it’s good enough for rendering purposes.

Using that substitution, the NDF works with basis in the microfacet theory: only mi-
crofacets that have their normals aligned with a given half vector will contribute to the
reflected color. What the NDF returns then is the concentration of how many microfacets

are oriented in that direction, determining the appearance of highlights in a surface.

There are several NDFs used in computer graphics, each one defining some sort of shapes
for highlights, but the one used here is the Trowbridge-Reitz GGX. This function produces
a smooth, fast, and long falloff in the highlight starting at its center. It’s definition is given
by:

042

w((n-h2(a? — 1) + 12

Dirowbridge—Rreitzcax (n, b, o) =
acR
Where
e « is the roughness of the surface

When « is low, it represents a smooth surface, and the equation produces a sharp bright

highlight that shows a high concentration of light rays. As « increases, representing a rougher
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surface, that highlight gets bigger, and with energy conservation taking part, it also gets less
bright.

Geometry Function

The Geometry Function is responsible for describing how many microfacets actually con-
tribute to reflected color in the observer’s direction, as depending on the surface roughness,

some energy of incoming rays may be lost.

Looking closely at the surface, no material has its microfacets perfectly aligned, meaning
that any surface has imperfections in geometry that can cause loss of energy. Common cases
of that loss are caused by small gaps that capture light or slopes overshadowing microfacets

that could contribute to the reflection according to a NDF.

There are some functions to describe that effect, but the one chosen has been shown to

be both physically realistic and mathematically valid, being known as the Smith Function:

Gsmitn(l,v,n, &) = Ggentickaax (1, n, @) Gsenickaax (v, n, o)

[-n
Gsenickaax (I, n, o) = (l-n)(1—g(a))+ g(a)
~ (a+1)?
gle) = —5—

Where

o Goeniickaax 1s the geometry function approximation known as Schlick-GGX. That is
used for evaluating the geometry contribution in a single direction based on the surface

normal
e g is a transformation of the roughness that depends on the implementation intent

By increasing the roughness, more energy is lost due to geometry imperfections. Besides,
both view and incoming light directions have to be accounted by the function, as light may

be obstructed both when reaching and leaving the surface.

2.2.3 The Rendering Equation

In computer graphics, the process of obtaining the final color of a pixel is described by
the Rendering Equation, responsible for telling how much radiance is leaving a surface given
how much radiance is coming to it. Several forms of that equation were used along the years,

but to describe how things work, the following will be used:

Ly(p,v) = Le(p,v) + /Q f(l,v) * Ly(r(p, 1), —1)cosOdw
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Where
e L,(p,v) is the outgoing radiance in direction v coming from point p

e L.(p,v) is the radiance emitted by the surface in direction v coming from point p

Q) is the hemisphere perpendicular to the surface at p
e f(l,v) is the BRDF of the surface

e 7(p,l) is a point obtained from casting a ray with origin p and direction I

Lo(r(p,1),—1) is the outgoing radiance from some point r(p,) in —I direction

0 is the angle between n and [
e dw are small parts of the {2 hemisphere, meaning they are small solid angles

The * represents a per component multiplication, as the quantities worked by the equation

are represented as 3D vectors that can be tough of as being RGB colors.

This function is explained as the sum of outgoing light of a surface. It combines light
emitted with light reflected, the later being calculated by a integral that runs through all
possible [ in the 2 hemisphere above p, i.e. the reflected light is a combination of light

incoming from all directions.

The Reflectance Equation

While the Rendering Equation describes how color is calculated for a point in a surface,
the scenes worked by the renderer usually do not have materials that emit light, so the
equation can be simplified. Besides that, casting rays outside the point is a heavy task
computationally, so real-time renderers usually use the Reflectance Equation, a simpler,

more restricted case of the Rendering Equation is used and is defined by:

L,(p,v) = /Qf(l,v) x L;i(p,1)cosfdw

Where
e L;(p,1) is the radiance coming to p from direction [

This function dispenses the need of casting rays to find the incoming radiance, but since
this renderer uses raytracing as the core algorithm, the calculation of r(p, ) happens as part

of the process, just not so heavily as the Rendering Equation proposes.
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One of the best things about that equation, and PBR for that matter, is that it yields
physically accurate results regardless of the scene lighting, helping both artists and pro-
grammers in many ways. For example, it eliminates the often needed rework when reusing
props and make every scene coherent and visually plausible, even for stylized work as seen

In cartoon movies.

2.3 Technical aspects

Before getting to the implementation, some useful terms and concepts must be explained
in order to justify some decisions made in the rendering engine. This section then aims to

show part of the inner workings of what is involved with computer graphics.

2.3.1 Vulkan

From the beginnings of computer graphics, many rendering techniques were developed,
but what helped the advance of the field was the advance of hardware, i.e dedicated graphics
cards, or GPUs.

As said in section 2.1, images are produced from data going through a pipeline defined
by several steps, each one producing input for the next. That concept is not new to the
industry, as long ago production lines were invented, but this model is really useful when
dealing with repetitive tasks over a predefined set of inputs, being perfect for computer

graphics and therefore being perfect for GPUs.

In the early days that pipeline was totally fixed, with only some variables being able to
change, and the inner workings of the GPU were defined by the manufacturers and their
drivers. Time passed and some parts of the classic rendering pipeline became more flexible,
allowing programmers to have better control over what was going on the graphics card. One

problem though was that much of the GPUs potential was being wasted.

Since each pixel is totally independent of other pixels calculations, the hardware deve-
loped for graphics cards are highly parallelized, using the Single Instruction Multiple Data
(SIMD) model to proceed through work. That model allows to much more things than only
pixel computations, being useful to many areas, so a new way to use the graphics card has

emerged: the General GPU programming, or GPGPU for short.

While many applications were improved by this model, programmers were still lacking
control over some useful GPU properties. More granular control, combined with an easy

integration between GPGPU and the classic rendering pipeline is what Vulkan provides.
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By having a very thin layer of drivers between the hardware and the programmer, Vul-
kan allows almost full control over the GPU. However that control comes with increased
responsibility: whoever uses it must deal with many constraints previously defined by the
less permissive drivers. That, combined with a wery explicit and verbose API, makes the
usage of Vulkan be recommended only to programmers that really need that control over

the graphics card, which is often the case in real-time applications like games.

2.3.2 Memory

One aspect that hardware advances brought to programmers was the lack of necessity of

memory management, as nowadays memory is a cheap resource.

While most programmers may never have to worry about how much memory there is
left or how allocations work, mainly because modern programming languages can take care
of that, when dealing with high performance applications it’s crucial to understand how
memory behaves, as programs are ultimately made to run in some hardware, making the

use of clever algorithms alone not sufficient to speed things up.

A well known talk given on the memory subject was given by Acton (2014), where some
important properties used by this implementation were explained. Between those properties
the most important is the location and access of data in memory, both in the GPU, called
Device Local Memory, and in the RAM, called Host Memory.

Every time a computation takes place inside a processing unity (PU), be it the GPU or
the CPU, data has to be transfered to the chip. The problem is that data transferring takes
time, sometimes much more time than the required by the computation. To speed things
up, the PU fetches a whole chunk of memory around the requested address, as it’s common

to subsequent requests be in nearby addresses.

When dealing with graphics cards another problem arises, as not only data localization
is important, but also all the data of an application comes from the RAM, in the CPU side.
Transferring that data is usually much slower than any operation that will take place in the

GPU, so it’s preferred to pass whole chunks of memory at once.

2.3.3 Image representation

In order to produce images, one has to know how they are represented and displayed
by a computer. This final part aims to explain some properties used when translating the

formulas to a 2D grid of pixels and why things are not so straightforward as they may seem.
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The previous sections explained how radiance is the calculation product that represents
color, and it’s correct to assume that when some one doubles the energy being irradiated, the
luminosity should be doubled. The thing is that the human eye is tricky, as with doubling
the values does not result in a perceptual doubled luminosity, i.e. the image does not appear
to have doubled the brightness.

As explained in Chapter 5 of Akenine-Moller et al. (2008), when calculating light with
the rendering formulas presented here, while things escalate linearly in the equations, the
human perception escalates in a inverse exponential way, so it’s easier to detect changes in

darker parts of a scene than it is in bright ones.

Older CRT monitors used to have a power law relationship that closely resembled the
inverse of the way that eye perceives luminosity: when doubling the input voltage, the percei-
ved luminosity seemed to be doubled. Nowadays, that relationship is simulated by monitors
to keep compatibility, and because of this behavior, a way to translate values from the linear
space used in calculations to the eye perception space is needed. That mapping is called

Gamma Correction.

The CRT power law curve follows a curve that is closely represented by 27, a exponen-
tial function. Because of that, gamma correction applied to the linear radiance following
the inverse exponential curve 27 . Those calculations take place in a space where radiance is

normalized to a [0, 1] range and the  exponent is what gives name to the function.

When using modern monitors, it’s usual to make calculations with v = 2.2, as that is a
good approximation in most cases. The problem is that several variables, both inside and
outside the hardware, interfere with how light is perceived, e.g. not only each monitor have
a particular configuration but the room where someone uses that computer have interfering
illumination. For that reason, both monitors and applications usually have options to adjust

the gamma value and screen and brightness.

Besides correcting the color space to produce visually appealing images, there is another
problem that arises from image representation: monitors work with RGB values in the [0, 1]
range, but that limit does not exist when using the rendering equations, therefore a lot of
information is lost. The solution is to make calculations freely, using a [0, co] range and then

translating it back to the [0, 1] range.

That more permissive range is called High Dynamic Range, or HDR for short, and is
extensively used in computer graphics. The technique used to translate from that to the

range used by monitors, called Low Dynamic Range (LDR), is called Tone Mapping.



22 THEORY 2.3

The effects of using HDR and tone mapping can easily be seen in the real life, being
similar to when the eye adjusts based on how bright a place is: when someone is in a dark
place and then turns some light on, everything appears very bright; the eye then begins to
get used to the new configuration, and everything seems normal. The moment that the light

is turned on represents the image in HDR format and the eye adjusting represents the tone

mapping.

There are several tone mapping functions to chose from, but the one used here is the

more standard Reinhard Tone Mapping, defined by:

Lupr

LReinhard = T 5
1, + Lupr

Where
e Lypr is the radiance in the HDR range
e 1, is a RGB vector where all components equals 1

It’s easy to see that any value expressed in HDR range will be translated to LDR range
by that function. The catch is that this method tends to make the image darker, so it’s not
the best option when talking about quality, but it is fast and simple, justifying the usage.



Chapter 3
Implementation

Implementing a renderer is not an easy task, and having to implement one with the
responsibility that Vulkan requires from the programmer only makes it a little harder. Fol-
lowing what was described in Part 1, here is shown how the most important parts of the
renderer were implemented. It’s worth noting that the full implementation won’t be included
in this document as Vulkan requires the code to be very explicit (the full implementation of
the renderer contains thousands of lines), so it’s not viable and probably of little interest to

most readers.

The implementation is divided in two parts: the base renderer, containing all the Vulkan
and C+-+ parts that get things to the GPU; and the raytracer, containing the GLSL code
used in computations and how the data is handled there. After that both parts are put

together to produce the final renderer.

3.1 Base Renderer

This part of the implementation is responsible for the vast majority of code, showing why
the usage of Vulkan should be considered only when really needed, as both maintenance and

overall understanding!'are made harder by the API.

It’s called Base Renderer because it composes the backbone of where the raytracing
algorithm will run, being responsible for maintaining the main rendering loop and flow of
data between host (CPU) and device (GPU).

3.1.1 Choosing a GPU

Vulkan requires the programmer to be very explicit when chosing something in exchange

of being very descriptive about what there is to chose from. After starting a Vulkan instance

"When one understands the ways of Vulkan and have a background in computer graphics, the code is
actually very descriptive and straightforward, with nothing being hided from the programmer.

23
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(vulkan application), one of the first jobs to be performed is the choice of which physical

device, or devices, will be used by that instance.

By looking at the description and capabilities of each available device, the programmer
knows which one will best suit the job. For this renderer, it’s preferred a discrete GPU (de-
dicated graphics card, as those are usually faster), and required that the device can perform
three operations: graphics computations, for using the usual graphics pipeline; compute sha-
ders, for calculating the image each frame; and present support, offering capability to show

something on the screen.

All those required operations are defined by the presence of Queues, interfaces that allow
the recording of commands to be submitted to the device, meaning that the chosen device

must have support to graphics, compute and present queues?.

In order to actually use the chosen physical device, a logical device must be created. That
logical unity is first an interface that defines which aspects of the physical device should be
enabled, and second a handle used by Vulkan to manipulate GPU resources. The physical
device is only used when creating queues and the logical device, therefore logical device will

be referred as Device from now on.

For this implementation, there is no need for any special device feature (geometry and
tessellation shaders for example), so the only real usage of device is as an interface for the
GPU. That said, when creating the device handle, it’s required to activate an extension ena-
bling screen presentation. Extensions are parts of Vulkan that are not required supported

by GPUS vendors, but are often supplied, as is the case of presentation support.

The reason that presentation support is not part of the core Vulkan is that in order
to someone present an image on the screen, OS specific functions must be called, breaking
the multi-platform purpose of the API. For having a renderer that supports screen drawing

while still being cross platform, the GLFW library was used.

GLFW provides an easy to use OS independent Window System Integration, i.e. it create
a window and let the programmer use it’s surface for drawing, regardless of the underlying
operating system. For Vulkan that means an extension must be enabled when the device is

created, and a VkSurfaceKHR, or surface for short, is acquired using a GLFW function.

2Currently Vulkan does not support present queues separated from graphics queues, so if a device supports
a graphics queue it also contains a present queue. Vulkan requires any device that supports it to have at least
one compute queue (not necessarily dedicated), but since the API can be used to GPGPU alone, graphics
queue is not required.
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3.1.2 A brief Vulkan breakdown

Before delving deeper into the renderer implementation, it’s useful to understand how
Vulkan operates. For that, some core API concepts will be explained, not only as they are
essential to the data workflow, but also as they gently introduce how to proceed through
the code.

All work that the GPU executes comes from the CPU when queues are submitted in a
certain point of the code. But queues alone are not useful, since they are just an interface

responsible for taking the earlier mentioned commands to the GPU.

Commands are instructions that the programmer wants to execute in the GPU, like set-
ting up constants or performing draw calls, but they are not so simple, since each command
must be submitted to a specific type of queue using command buffers. More than that, com-
mands are not just created like a common C-++ variable, as they must be also located on
the GPU. For that reason, they are recorded into command buffers that are created using a

Command Pool.

A Command Pool is like an allocator located on the GPU, but with specific capacity and
designed to work with a specific queue family. Many Vulkan structures use similar kinds of
allocation pools, as they are simple and provide large control over which resources will be

used, allowing the driver implementation to optimize usage.

Just with those constructs it’s already possible to see that Vulkan is composed by many
small and simple parts that come together in order to do what the programmer needs, but
for that to work properly, the implementation must know beforehand how that data will be

used in detail, ideally creating the whole framework before any computation begins.

All those concepts alongside with many more will be used by the next sections, having

the code workflow looking something like this at this point:
1. Create a Vulkan Instance
2. Create a GLFW window
3. Create a surface
4. Select a physical device
5. Create the graphics, compute and present queues

6. Create a logical device
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Notice that there is nothing related to commands so far. Thats because commands are
specific to some parts of the implementation, more precisely the ones where the device do
something useful, and so far the only interaction with the GPU was to know it’s properties

and features, i.e. only the most basic to using Vulkan was done.

While describing all the used Vulkan constructs could be useful to someone, it’s not so
important in order to understand how the renderer was implemented. The main goal of this
section was to introduce how the API operates and distributes the workload, that way it’s

easier to follow the next sections without caring too much about specific stuff.

3.1.3 Graphics Pipeline

Having created a Device, it’s now possible to make the real interesting stuff with Vulkan,

and the first used by the renderer is to create a classic rendering pipeline.

The classic rendering pipeline have two main programmable stages: the vertex shader
and the fragment shader. If the reader does not know what shaders are, just think of them

as programs that run in the GPU, because that’s pretty much what they are.

As said in Chapter 2, data comes to the pipeline in the form of vertices, those are submit-
ted to the vertex shader, where their positions are transformed to Normalized Device Coordi-
nates, or NDC for short, a vector space where visible vertices stay in the [(—1, -1, —1), (1,1, 1)]

range.

From that, the rasterizer takes part and then gives the produced fragments to the frag-

ment shader, where color is calculated and written to an image.

In Vulkan the classic rendering pipeline is created by the vkCreateGraphicsPipelines
function, taking, among others, a VkGraphicsPipelineCreatelnfo as parameter. Now those
can seem daunting at first, but everything in Vulkan operates with structures, and that
structure just defines every aspect of this pipeline, i.e. the programmer configures all the
pipeline steps, describing which shaders to use, how to perform fixed pipeline parts, how

input will come and many more.

From all properties that the graphics pipeline used by this renderer uses, the only worth
some dedicated explanation is the render pass. That property defines how attachments, i.e.
images and buffers, should be treated by the GPU. For this renderer, the only operation
that the graphics pipeline performs is read a texel from a texture and output its value, so

the render pass just describes the output image format.
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Notice that the render pass just describes how an attachment should be treated, it does
not link the attachment itself. This job is performed by a framebuffer, another structure that
define which attachments should be used. That framebuffer is linked to the pipeline later,
when the command buffers are being filled, and then executed when this buffer is submitted

to the graphics queue.

While this pipeline is highly optimized for rendering, it does not fit the purposes of this
renderer, as it uses raytracing to generate the images. That said, this pipeline acts as a mid-
dle ground between those images and what is presented on the screen. It works by sending
a single quad (rectangle) composed of two triangles to the GPU. Each vertex of that quad

contains a UV coordinate used to sample from the raytraced image.

UV coordinates are 2D vectors with its components ranging in [0, 1]. Inside the fragment
shader they are used to sample (get texels) from some input image, i.e. the attachment

defined by the framebuffer, in this case the image produced by the raytracer.

But presenting that image is not as straightforward, as inside the graphics pipeline only
vertices in the valid NDC range get to the fragment shader, so in order to raster the whole

generated image, the quad sent to the GPU is defined by:

1 struct Vertex

2 {

3 glm::vec3d position;

4 glm::vec2 uv;

5 float _padding;

6 };

7

8 const std::vector<Vertex> quad =

9 {

10 {{-1.0f, —1.0f, 1.0f}, {0.0f, 0.0f}},
11 {{-1.0f, 1.0f, 1.0f}, {0.0f, 1.0f}},
12 {{ 1.0f, 1.0f, 1.0f}, {1.0f, 1.0f}},
13 {{ 1.0f, —1.0f, 1.0f}, {1.0f, 0.0f}},
14}

Since that quad is static for all the program’s duration, it’s possible to eliminate the need
of sending it to the GPU at all. For that, the same vector describing the quad’s vertices is
defined inside the vertex shader, then the vertex to be used is defined by a build in variable

called gl VertexIndex, indicating which vertex is being shaded.
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3.1.4 Compute Pipeline

The raytracing algorithm runs in the GPU with a Compute Shader, using the GPGPU
part of Vulkan to produce the final raytraced image used by the fragment shader.

Like with the graphics pipeline, the compute pipeline is created by Vulkan with a func-

tion and primarily a createlnfo structure, but it’s much simpler that the graphics one.

All the hard work is made by the compute shader, so the only real work of the pipeline
is to describe how data is organized, then data about the geometry inside a scene is passed
to the GPU, and finally a dispatch command is passed to the compute queue telling the

compute shader to be executed.

All the work on the host side then is resumed in configuring the pipeline beforehand and

setting the scene variables at execution time.

As data is sent to the GPU as a chunk of bytes, for the configuration part, Vulkan re-
quires descriptions of the variables used inside a shader so it knows where in the memory to
find each information. That kind of configuration is also needed in the graphics pipeline, but
as the only variable sent to the device by it is the image produced by the compute pipeline,

the explanation will be given for the compute shader only.

Each kind of resource inside the compute shader have a specific type and is associated
with a binding. A binding can be tough of as being a constant memory pointer that points
to the start of a big array of bytes. That array has no idea of what it holds, so a descrip-
tion of the data inside it must be provided. That description is provided by DescriptorSets,
structures that associate types of resources to locations inside a binding. Locations are what

the shader uses to find where in the binding a resource can be found.

The data passed to the GPU by this pipeline must be well defined and organized in order

to be used by the compute shader, therefore the following organization was used:

e Array of spheres

e Array of planes

e Array of light sources
e Array of materials

e View and projection matrices

Those arrays first reside into host memory, where they are calculated and maybe updated,

then passed to the compute pipeline via command buffers or memory transfer depending
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on the amount of data changed. Of course, in order to that be available in device memory;,
a descriptor set defining those arrays is created and then associated with the pipeline at

creation time.

3.1.5 Swap Chain

As said previously, Vulkan does not require the hardware supporting it to provide a way
to present images on the screen, but when the intent is to show something on the screen, a

structure called Swap Chain is used.

It works by taking a screen surface (not to be confused with object’s surfaces used by the
raytracer) from the Operating System, creating several images compatible with that surface.
The graphics pipeline then acquire one of those images and then draws to it, submitting it

to the present queue when the drawing finishes.

There are some limitations that must be followed when creating the swap chain, as it
depends on the hardware being used. Those limitations are defined and should be checked

when choosing the physical device, but the most relevant is the presentation mode.

The way that image acquisition and presentation works follows the selected (if available)
presentation mode. In general, for any of supported modes, images created by the swap chain
lies on a queue, then when the graphics pipeline requests an image, the swap chain verifies

if there is an image on that queue.

After using an image, the application MUST return that image to the swap chain by
submitting to the present queue. The image on the screen then is updated following the
presentation mode, varying from immediately showing the newest image to waiting for the
screen refresh to get the next image on a specific queue. If a hardware supports presentation,

the only mode that Vulkan requires to be present no matter what is the queue one.

3.2 Raytracer

When the compute shader begins executing, the algorithm is pretty straight forward,
following what was described in Chapter 2. There are however some implementation details
to be accounted for. If the reader comes from an object oriented programming mindset, some

things may seem nonsense, as there are no objects nor classes inside a shader.

First, as briefly explained in the compute pipeline section, all geometry data comes to

the shader basically as arrays of predefined data. Those arrays are actually arrays of structs,
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as structs are allowed in shader code.

For both spheres and planes, those structures contain geometric information like position
and radius for spheres and position and normal for planes. Not only that, but a index to
a PBR structure array is also present. That latter array contains the material information

and can be shared between many objects.

Light sources are all punctual, meaning they are just a point in the scene and the light
rays directions are calculated per intersection point. Those intersections, the main part of

the algorithm, are calculated from each pixel as described below, using one ray per pixel:
1. Calculate the camera looking direction (main direction)
2. For each pixel, add a offset vector to the main direction, representing that pixel’s ray

3. With the pixel’s ray, test it against ALL the geometry in both spheres and planes

arrays, storing the closest intersection point, normal and index to the material array
4. Calculate the light direction for the intersection point
5. Perform the lightning calculations based on the stored information

6. Save that color, calculate a new direction for the bounce ray and repeat the process,

accumulating the resulting colors with the original one.

Notice that all the intersection code must be present in the shader code, as common
object oriented classes do not exist. That is not a problem, and even common to C program-

mers, but may be something strange for someone that has never used that approach.

Also, inside the geometry data, only Plain Old Data (PoD) is expected, like it is in a
plain C struct (in fact, one could treat incoming data from the Host as a bunch of C structs).
Any pointer type is useless for the shader, as not only it would refer to random memory but
also there is no such concept in GLSL. That said, indexing is used as an alternative, but it’s

error prone and hard to debug.

If the reader is wondering why someone would like to use pointers inside a shader, for the
case of raytracing there is a pretty simple answer: acceleratio