
Universidade de São Paulo
Instituto de Matemática e Estatística

Bachalerado em Ciência da Computação

Giuliano Augusto Faulin Belinassi

Optimizing a Boundary Elements Method for Stationary

Elastodynamic Problems Implementation with GPUs

São Paulo
Dezembro de 2017

Optimizing a Boundary Elements Method for Stationary
Elastodynamic Problems Implementation with GPUs

Monografia final da disciplina
MAC0499 – Trabalho de Formatura Supervisionado.

Supervisor: Prof. Dr. Alfredo Goldman vel Lebman
[Cosupervisor: Prof. Dr. Marco Dimas Gubitoso]

São Paulo
Dezembro de 2017

Resumo

O Método de Elementos de Contorno é uma alternativa eficiente para modelar domínios
ilimitados, podendo ser utilizado para simular vibrações no solo. Aplicando as abordagens
descritas neste trabalho em uma implementação legada voltada a problemas estastodinâmi-
cos estacionários, conseguimos um speedup de 20× no tempo total de simulação utilizando
uma Tesla K40c quando comparado com o programa original, e obtemos um speedup de
100× no método responsável pela construção das matrizes H e G do problema dinâmico
utilizando uma GeForce GTX 980. Com estes resultados é possível simular domínios com
mais pontos de malha.

Palavras-chave: Método de Elementos de Contorno, MEC, GPU, Computação Paralela,
Computação de Alto Desempenho, Métodos Numéricos

i

Abstract

The Boundary Element Method (BEM) is a very efficient alternative for modeling un-
limited domains, being useful to simulate soil vibrations. Aplying the approach described in
this work into a legacy implementation for stationary elastodynamic problems, we obtained
a 20× speedup in the total time of simulation using a Tesla K40c when compared to the
original implementation, and a 100× speedup in the routine responsible for building the H
and G matrices of the dynamic problem with a GeForce GTX 980. With these results, it is
possible to simulate domains with a higher number of mesh elements.

Keywords: Boundary Elements Method, BEM, GPU, Parallel Computing, High Perfor-
mance Computing, Numerical Methods

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Approach . 1
1.3 Objectives . 2
1.4 Monograph Structure . 2

2 Theoretical Background 3
2.1 The Boundary Elements Method . 3
2.2 Gaussian Quadrature . 3
2.3 LU Decomposition . 5
2.4 Parallel Programming . 7

2.4.1 CUDA Programming . 8
2.5 Related Works . 9

3 Development 11
3.1 Calling CUDA from Fortran 77 . 11
3.2 Ghmatecd Optimization and Parallelization 12
3.3 Ghmatece Optimization and Parallelization 15
3.4 Linear System Solving Optimization . 16
3.5 Interec Paralelization and Optimization 16

3.5.1 Interec1 Parallelization . 16
3.5.2 Interec2 Parallelization . 17

4 Methods and Results 19
4.1 Methods . 19
4.2 Results and Isolated Conclusions . 20

4.2.1 Ghmatecd Routine . 20
4.2.2 Ghmatece Routine . 21
4.2.3 Rigid Routine . 21
4.2.4 Linear System Solving Routine . 22
4.2.5 Interec1 Routine . 22

v

vi CONTENTS

5 Final Conclusions 29
5.1 BEM Efficiency as a Computational Tool . 29
5.2 As a Programmer . 29
5.3 Future Works . 30

A Computers used in tests 31

Bibliography 35

Chapter 1

Introduction

1.1 Motivation
Differential equations governing problems of Mathematical Physics have analytical so-

lutions only in cases in which the domain geometry, boundary and initial conditions are
fairly simple. Problems with arbitrary domains and fairly general boundary conditions can
only be solved approximately, for example, by using numerical techniques. These techniques
were strongly developed due to the presence of increasingly powerful computers, enabling
the solution of complex mathematical problems.

The Boundary Element Method (BEM) is a very efficient alternative for modeling unlim-
ited domains since it satisfies the Sommerfeld radiation condition, also known as geometric
damping (Katsikadelis, 2016). This method can be used for numerically modeling the sta-
tionary behavior of 3D wave propagation in the soil and it is useful as a computational tool
to aid in the analysis of soil vibration (Dominguez, 1993). A BEM based tool can be used
for analyzing the vibration created by heavy machines, railway lines, earthquakes, or even
to aid the design of offshore oil platforms.

With the advent of GPUs, several mathematical and engineering simulation problems
were redesigned to be implemented into these massively parallel devices. However, first GPUs
were designed to render graphics in real time, as a consequence, all the available libraries,
such as OpenGL, were graphical oriented. These redesigns involved converting the original
problem to the graphics domain and required expert knowledge of the selected graphical
library.

NVIDIA noticed a new demand for their products and created an API called CUDA
to enable the use of GPUs for general purpose programming. CUDA uses the concept of
kernels, which are functions called from the host to be executed by GPU threads.

Regarding this work, this parallelization approach is useful because an analysis of a large
domain requires a proportionally large number of mesh elements, and processing a single
element have a high time cost. Doing such analysis in parallel reduces the computational
time required for the entire program because multiple elements are processed at the same
time. This advantage was provided by this research.

1.2 Research Approach
Although BEM has a very interesting mathematical background showing why it works,

here we focus mainly on subjects pertinent to the computational nature of such method,
such as algorithms used and implementation questions. Hence, we do not show any detailed

1

2 INTRODUCTION 1.4

proof about any mathematical property of BEM or discuss how it can be used to solve a
particular set of problems.

1.3 Objectives
The main objective of this work is to provide an optimized version of the code provided

by Carrion (2002), eighter by (1) reducing the number of calculations, (2) improving cache
usage, or (3) paralelizing costly routines. After all optimizations, the program must still
yield acceptable results, that means we must still minimize errors caused by floating point
imprecisions. Another objective is extend the number of mesh elements that the program
can accept as input.

1.4 Monograph Structure
This document is presented in the following order: Chapter 2 presents an overview of

theoretical background required, from the Boundary Elements Method formulation to the
Gaussian Quadrature (used to calculate integrals numerically) and LU Decomposition (used
to solve dense linear systems). Chapter 3 discusses all development process, including how
routines were optimized and parallelized. Chapter 4 presents the methodology used in this
research and the obtained results. Finally, Chapter 5 present conclusions from obtained data
and some setbacks while developing in CUDA platform.

Chapter 2

Theoretical Background

2.1 The Boundary Elements Method
Without addressing details on BEM formulation, the Boundary Integral Equation for

Stationary Elastodynamic Problems can be written as:

cijuj(ξ, ω) +

∫
S

t∗ij(ξ, x, ω)uj(x, ω)dS(x) =
∫
S

u∗ij(ξ, x, ω)tj(x, ω)dS(x) (2.1)

After performing the geometry discretization, Equation (2.1) can be represented in matrix
form as:

Hu = Gt (2.2)

Functions u∗ij(ξ, x, ω) and t∗ij(ξ, x, ω) (called fundamental solutions) present a singular behav-
ior when ξ = x ordely O(1/r), called weak singularity, and O(1/r2), called strong singularity,
respectively. The r value represents the distance between x and ξ points. The integral of
these functions, as seen in Eq. (2.1), will generate the G and H matrices respectively, as is
shown in Eq. (2.2).

To overcome the mentioned problem in the strong singularity, one can use the artifice
known as Regularization of the Singular Integral, expressed as follows:

cij(ξ)uj(ξ, ω) +

∫
S

[
t∗ij(ξ, x, ω)DYN − t∗ij(ξ, x)STA

]
uj(x, ω)dS(x)+

+

∫
S

tij(ξ, x)STAuj(x)dS(x) =
∫
S

u∗ij(ξ, x, ω)DYNtj(x, ω)dS(x)
(2.3)

Where DYN = Dynamic, STA = Static. The integral of the difference between the dynamic
and static nuclei, the first term in Equation (2.3), does not present singularity when executed
concomitantly as expressed because they have the same order in both problems.

2.2 Gaussian Quadrature
Some integrals can only be approximated by numerical methods such as the Gaussian

quadrature, that means: ∫ 1

−1
f(x)dx ≈

n∑
j=1

ajf(xj) (2.4)

Where aj are called weights and xj are called abscissae, and these values can be computed
using Legendre Polynomials, as introduced below.

3

4 THEORETICAL BACKGROUND 2.2

Definition 1. Legendre Polynomials are given by the following recurrence:

φj(x) =


1, if j = 0.

x, if j = 1.
2j−1
j
xφj−1(x)− j−1

j
φj−2(x) if j ∈ N− {0, 1}

(2.5)

It can be shown that those polynomials have the following important properties:

Theorem 1. Legendre Polynomials satisfy the following properties (Ascher e Greif, 2011):

1. Orthogonality: for i 6= j,
∫ 1

−1 φi(x)φj(x)dx = 0.

2. Calibration: |φj(x)| ≤ 1 for any −1 ≤ x ≤ 1, and φj(1) = 1.

3. Oscillation: φj(x) has degree equal to j and all its roots are inside]− 1; 1[.

The proof of such theorem is beyond the scope of this work. See Ascher e Greif (2011).

Theorem 2. Let q(x) be a polynomial of degree < n. Then q(x) is orthogonal to φn(x), that
is: ∫ 1

−1
q(x)φn(x)dx = 0 (2.6)

Proof. Since {φ0, φ1, · · · , φn} is an orthogonal base of all polynomials of degree ≤ n, then
all polynomials of degree ≤ n can be written as linear combination of φ0, φ1, · · · , φn. Since
q(x) degree is < n, then:

q(x) =
n−1∑
k=0

αkφk(x) (2.7)

with such information, just calculate:

∫ 1

−1
q(x)φn(x)dx =

∫ 1

−1

(
n−1∑
k=0

αkφk(x)

)
φn(x)dx =

n−1∑
k=0

αk


∫ 1

−1
φk(x)φn(x)dx︸ ︷︷ ︸
0,orthogonality

 = 0 (2.8)

These two theorems above are important for quadrature’s precision. Let’s now present
the Gaussian Quadrature.

Let r(x) be a polynomial of degree < n. The Gaussian Quadrature must satisfy the
equation below with equality. ∫ 1

−1
r(x)dx =

n∑
j=1

ajr(xj) (2.9)

Let’s now show a simple trick that can be done with Legendre Polynomials to enhance the
quadrature precision. Let p(x) be a polynomial of degree < 2n. If we divide p(x) by φn(x),
both quotient q(x) and the remainder r(x) have degree < n because φn(x) have degree equal
to n. That means:

p(x) = q(x)φn(x) + r(x) (2.10)

2.3 LU DECOMPOSITION 5

Integrating both sides:∫ 1

−1
p(x)dx =

∫ 1

−1
q(x)φn(x)dx︸ ︷︷ ︸

0,by Theorem 2

+

∫ 1

−1
r(x)dx =

∫ 1

−1
r(x)dx (2.11)

Let’s now select the abscissae points wisely. If all xj are zeroes of the Legendre Polyno-
mials (φn(xj) = 0), then we would have:

p(xj) = q(xj)φn(xj)︸ ︷︷ ︸
0

+r(xj) = r(xj) (2.12)

This means that the quadrature is exact to any polynomial of degree up to 2n − 1 if we
could select the weights properly, thus the quadrature precision would be as good as we
could approximate f(x) by a polynomial of degree 2n−1. For the weight points, Hildebrand
(1987) shows that one could use:

aj =
2(1− xj2)

(n+ 1)2(φn+1(xj))2
(2.13)

2.3 LU Decomposition
In many areas of science concerning numerical methods, it is necessary to find a solution

that satisfies together many equations. In this subsection, we describe one of the most
used algorithms to solve a specific kind of linear system of equations. Before showing such
algorithms, a set of definitions and theorems are required to understand how it operates.

A matrix is denoted as an element of Cm×n, where m is the number of rows and n is the
number of columns. A vector is an element of Cm, where m is the number of rows. Notice
that a vector is a single column matrix.

Definition 2. A system of linear equations is a equation of the form Ax = b, where A ∈
Cm×n, b ∈ Cn are known and x ∈ Cm is the only unknown in the equation.

Although the definition above is general to any linear system, here we will explore prop-
erties of linear systems characterized by a square and nonsingular matrix A.

Definition 3. A square matrix is such that the number of rows is equal to the number of
columns. A matrix that is not square is called rectangular.

Definition 4. A matrix A ∈ Cn×n is called nonsingular if and only if Ax = 0⇔ x = 0.

Linear systems that have nonsingular matrices have a unique solution, as demonstrated
below.

Theorem 3. Let A ∈ Cn×n be a nonsingular square matrix. Then the system Ax = b admits
a unique solution x ∈ Cn.

Proof. Let A be a nonsingular square matrix and suppose, by absurd, that Ax = b have
two distinct solutions named x and y. Since y is also a solution, then Ay = b. But then
Ax − Ay = b − b = 0. Isolating A we find that A(x − y) = 0. But since A is nonsingular,
then by definition of nonsingularity we have that (x − y) = 0, implying that x = y. This
result is an absurd because we supposed that x and y are distinct solutions.

6 THEORETICAL BACKGROUND 2.3

There is also an interesting special case of square matrices, called triangular matrices.
There are two types of triangular matrices, lower triangular and upper triangular.

Definition 5. An upper triangular matrix is such that all elements below the main diago-
nal are 0. Analogously, a lower triangular matrix is such that all elements above the main
diagonal are 0.

The matrices below are examples of triangular matrices. At the left, we have an upper
triangular matrix. At the right, we have a lower triangular matrix.1 2 3

0 4 5
0 0 6

 1 0 0
2 3 0
4 5 6


Systems of equations with triangular matrices have an interesting property that it can

be solved with an O(n2) algorithm, as illustrated in algorithms 1 and 2.

Algorithm 1 Solves Ax = b, where A is a lower triangular nonsingular matrix. Replaces b
with the result
1: procedure forward_substituition(A ∈ Cn×n, b ∈ Cn)
2: for j := 1, n do
3: if A[j][j] == 0 then
4: Error: A is singular.
5: b[j]← b[j]/A[j][j]
6: for i := j + 1, n do
7: b[i]← b[i]− A[i][j] ∗ b[j]

Algorithm 2 Solves Ax = b, where A is a upper triangular nonsingular matrix. Replaces b
with the result
1: procedure backward_substituition(A ∈ Cn×n, b ∈ Cn)
2: for j := n, 1 do
3: if A[j][j] == 0 then
4: Error: A is singular.
5: b[j]← b[j]/A[j][j]
6: for i := 1, j do
7: b[i]← b[i]− A[i][j] ∗ b[j]

The question that rises now is how can we reduce a square nonsingular matrix A to
triangular matrices. This is what LU decomposition with partial pivoting does, it decomposes
A in three matrices P ᵀLU , where P is a pivoting matrix, L is lower triangular and U is
upper triangular. Briefly, a pivoting matrix is such that when operated with a matrix, it
interchanges its columns; this is used to avoid divisions by 0 (Watkins, 2004). Algorithm 3
illustrates how A can be decomposed in such matrices.

2.4 PARALLEL PROGRAMMING 7

Algorithm 3 Decomposes A in P ᵀLU , P is a permutation matrix stored in a vector. Stores
L and U over A.
1: procedure lu_partial_pivoting(A ∈ Cn×n)
2: Allocate P ∈ Nn−1

3: for k := 1, n− 1 do
4: amax← max{|A[k][k]|, |A[k + 1][k]|, · · · , |A[n][k]|}
5: if amax == 0 then
6: Error: A is singular.
7: m← smaller integer ≥ k that |A[m][k]| == amax
8: P [k]← m
9: if m 6= k then

10: Swap column m and k
11: for i := k + 1, n do
12: A[i][k]← A[i][k]/A[k][k]

13: for j := k + 1, n do
14: for i := k + 1, n do
15: A[i][j]← A[i][j]− A[i][k] ∗ A[k][j]
16: if A[n][n] == 0 then
17: Error: A is singular.

Using the fact that A = P ᵀLU , one can solve Ax = b by solving P ᵀLUx = b. Since P is
a permutation matrix, then its inverse P−1 = P ᵀ (Watkins, 2004) and now one must solve
LUx = Pb. Let y = Ux. Solving Ly = Pb will result in a numerical value to y. Solving
Ux = y will finally assert x.

Since the cost of decomposing A into P ᵀLU is O(n3), the time required to compute P ᵀb
is, naively, O(n2) and the time required to solve the two triangular systems is O(n2), then
the cost of solving Ax = b is O(n3).

2.4 Parallel Programming
Imagine the following scenario: You have to build a bridge to connect two parts of a city,

named A and B, that are separated by a river. Let’s say that if a single person builds this
bridge from A to B, the time required to do so is t. How can we build this bridge faster? If we
have another man building the same bridge in parallel to you but from B to A and connect
it at the middle of the river, then the time required is t/2. This silly example captures the
essence of parallel computing. How can we use multiple processors or multiple machines with
some coordination to archive the same purpose? From this example comes the concept of
speedup, as presented in the following definition.

Definition 6. Let T1 be the time consumed to complete a task using one processor. Let
T|| be the time consumed to complete the same task using n processors. The speedup Sn is
calculated by:

Sn =
T1
T||

(2.14)

There are various computer architectures designed to handle parallel computing, as de-
scribed by Flynn Taxonomy (Pacheco, 2011), but remarks are necessary to two architectures.

8 THEORETICAL BACKGROUND 2.4

1. SIMD: Stands for Single Instruction, Multiple Data. This refers to vectorized processors
allowing a single operation to be executed in a vector content. Examples are Intel SSE
and GPUs, although GPUs are not a pure SIMD, as described later.

2. MIMD: Stands for Multiple Instruction, Multiple Data. This refers to independent
multicore systems, capable of executing tasks asynchronously. in MIND is located
both shared memory and distributed memory systems. Shared memory systems are an
example of it, where various processors read and write to a shared memory. For such
systems, a collection of directives called OpenMP can be used to explore its parallel
capabilities with little changes in the original code. (Pacheco, 2011)

An important concept regarding parallel computing is the concept of processes and
threads. A process is an operating system (OS) abstraction that allows a program to have
the illusion that it monopolizes the entire CPU (Love, 2005). Every process has at least one
execution flow, which is named thread. Modern OS can handle multiple threads within a
process, allowing many different executions flows in the same process. (Tanenbaum, 2009)

Although OpenMP uses simple pragmas to take advantage of multiple CPUs in a shared
memory system by creating multiple threads within a process, GPUs require severe mod-
ifications in the original code to run in such devices. NVIDIA developed CUDA for this
purpose.

2.4.1 CUDA Programming

CUDA is an acronym to Compute Unified Device Architecture and it is an extension to
C++ language that allows running general purpose code in NVIDIA GPUs. Its execution
is divided into a host (CPU) and device (GPU) parts. For the device part, CUDA uses the
concept of kernels, which are functions called from the host to be executed by GPU threads.
The memory space is also separated between the host and the device, and data must be
manually transferred from host to device in order to allow a device to access them, or from
device to host to retrieve results computed by the GPU. Figure 2.2 illustrates the execution
flow of a CUDA program.

CUDA kernels are organized into a set of blocks composed of a set of threads that
cooperate with each other. The number of threads within a block and the number of blocks
are specified at the launch moment, thus it can be adjusted to match the problem input size.
The GPU’s memory hierarchy also reflects this organization (Kirk e Wen-Mei, 2016), since
it is divided into four types:

1. Registers: Private to each thread, it is used to hold frequently accessed data.

2. Shared Memory: It is a low latency memory shared between all threads within a block.

3. Constant Memory: A read-only memory that provides short latency and high band-
width access.

4. Global Memory: A memory located outside the GPU processor chip. It can be accessed
by all threads, but it is slower than all before-mentioned memories. It is the most
abundant memory in the device.

It must be highlighted that all threads may not run in parallel since it is limited to the
amount of Streaming Multiprocessors (SM) the device has. Without entering in details, an
SM is what schedules a set of 32 threads called Warps, executing each instruction in a SIMD
fashion. Hence, the number of threads running in parallel is limited by the amount of SM

2.5 RELATED WORKS 9

Figure 2.1: A typical CUDA execution flow.

available in the GPU. Because a GPU contains multiples SM, it is not considered a pure
SIMD device.

In order to maximize the efficiency of a CUDA application, the programmer needs to
minimize the memory transfer between CPU and GPU and explore any parallelism structure
of the problem, as discussed in devTalk (2012).

2.5 Related Works
As GPUs became famous by its massively parallel capabilities and applications were

developed to explore its potential, there is no surprise that researchers would use GPUs to
accelerate Boundary Elements Method implementations.

Torky e Rashed (2017) presented an implementation for generating both H and G ma-
trices of equation 1.2 with GPU acceleration using two CUDA kernels: One for computing
the G matrix and one for the H matrix.

While assembling both H and G matrices, the authors managed to archive a speedup of
25 times and kept the H matrix in GPU memory to avoid memory transfers between device
and host. With regard to solving the linear system, they obtained a speedup of 1300 times.
Both results were obtained using an Intel Core i7-3770 paired GeForce GTX 970.

As for precision, there is no further discussion other than the usage of 10 points for the
Gaussian Quadrature and that both CPU and GPU processed data in exactly the same
manner and with reliable accuracy.

10 THEORETICAL BACKGROUND 2.5

Figure 2.2: Organization of a kernel execution with 9 threads per block and 4 blocks.

Chapter 3

Development

The first goal of the project was to compile and execute the code with at least one sample.
While doing these, we found a few issues such as:

• The original code provided by Carrion had issues common to legacy code. It depended
on some features offered by Compaq Visual Fortran, thus the code needed modifications
to be able to compile with the GFortran compiler. The code also had indentation issues
and used several GOTO statements to execute simple tasks such as looping because
of limitations imposed by Fortran 77.

• There were no automated tests for the program.

• Fortran has a feature called implicit variable declaration that showed to be error-
prone because the code had a bug due to a misspelled variable in a file named
Solfundif.for (the RDN variable was misspelled DRN), and the compiler did not
complain about the uninitialized variable.

• There was a need to call CUDA code from Fortran to avoid a complete rewrite of the
application in C or C++. The Portland Group (PGI) provides a paid CUDA Fortran
compiler, so another solution was required.

• The original code only used static memory allocation for loading all data. This re-
sulted in the following problems: (1) Huge memory usage for small inputs because the
application does not know the memory requirement to load the data, and (2) A limit
of 2Gb of memory for the total of statically allocated variables (Corden, 2010).

After all those issues were addressed, a parallel optimization of BEM began by analyzing
the sequential code provided. Gprof, a profiling tool by GNU, revealed the two most time-
consuming routines: Ghmatecd and Nonsingd, with 60.9% and 58.3% of the program total
elapsed time, respectively. Since most calls to Nonsingd were performed inside Ghmatecd,
most of the parallelization effort was focused on that last routine.

3.1 Calling CUDA from Fortran 77
Although The Portland Group (PGI) provides a CUDA Fortran compiler, it is not free-

ware software and thus might increase the application development costs. An alternative
to this is to create C++ functions that are callable from Fortran and use CUDA C++ to
program the kernels.

11

12 DEVELOPMENT 3.2

Since GFortran appends an underscore to all compiled Fortran subroutines, manually
appending it to a C routine makes it visible to Fortran. Since Fortran also passes all argu-
ments as reference, then the C routine needs to expect a pointer to a variable rather than
the variable itself. Now, to call C++ from Fortran it is necessary to just wrap the function
with extern "C" clause, as exemplified below.
1 extern "C"{
2 void cal lable_from_fortran_ (int∗ a , int∗ b) {
3 p r i n t f ("%d\n" , (∗ a) + (∗b)) ;
4 }
5 }

1 PROGRAM CALL_C
2 INTERFACE
3 SUBROUTINE ca l lab le_from_fort ran (a , b)
4 IMPLICIT NONE
5 INTEGER a , b
6 END SUBROUTINE
7 END INTERFACE
8
9 CALL ca l lab le_from_fort ran (40 , 2)

10 ENDPROGRAM CALL_C

It must be highlighted that matrices in Fortran are stored in column-major order and
indexed from 1, whereas in C and C++ they are stored in line-major order and indexed
from 0. This means that when accessing the position A(i,j) from a Fortran matrix in C,
one must access A[j-1][i-1].

3.2 Ghmatecd Optimization and Parallelization
Ghmatecd is a routine developed to create both the H and G matrices for the dynamic

problem described in Equation (2.2). It does so by making several calls to Nonsingd, a
routine that uses the Gaussian Quadrature as described in Chapter 2.2 to compute the
integral of the dynamic part in Equation (2.1); and Sing_de, a routine that implements
the artifice described by Equation (2.3).

At first, we did some optimization to the original sequential code to remove unnecessary
computations or memory copy. Ghmatecd’s code had additional matrices used in the com-
putations that dependency analysis showed to be unnecessary. There was also a vectorial
product that was computed for each column of H and G that were recomputed in other
routines, thus it was moved to a separate function called Normvec and its result passed to
Ghmatecd.

We also optimized Nonsingd routine by removing all calls to a procedure named
Gauleg that were used to compute the abscissae and weight points of the Gaussian Quadra-
ture. These points are always the zeroes of the Legendre Polynomials and there is no need
to compute them more than once in the entire program, hence the result of Gauleg can
just be passed to Nonsingd.

Algorithm 1 shows the pseudocode for the Ghmatecd subroutine. Let n be the number
of mesh elements and m the number of boundary elements. Ghmatecd builds matrices H
and G by computing smaller 3× 3 matrices returned by Nonsingd and Sing_de.

3.2 GHMATECD OPTIMIZATION AND PARALLELIZATION 13

Algorithm 4 Creates H,G ∈ C(3m)×(3n)

1: procedure Ghmatecd
2: for j := 1, n do
3: for i := 1,m do
4: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
5: if i == j then
6: Gelement,Helement← Sing_de(i) . two 3× 3 complex matrices
7: else
8: Gelement,Helement← Nonsingd(i, j)
9: G[ii : ii+ 2][jj : jj + 2]← Gelement

10: H[ii : ii+ 2][jj : jj + 2]← Helement

There is no interdependency between all iterations of the loops in lines 2 and 3, so
all iterations can be computed in parallel. With OpenMP, this can be done with a simple
pragma for statement. Since typically a modern high-end CPU have 8 cores, even a small
number of mesh elements generate enough workload to use all CPUs resources if this strategy
alone is used. On the other hand, a typical GPU contain thousands of processors, hence
even a considerable large amount of elements may not generate a workload that consumes
all the device’s resources. Since Nonsingd is the cause of the performance bottleneck of
Ghmatecd, the main effort was put to implementing an optimized version of Ghmatecd,
called Ghmatecd_Nonsingd, that only computes the Nonsingd case in the GPU, and
leave Sing_de to be computed in the CPU after the computation of Ghmatecd_Nonsingd
is completed. The pseudocode in Algorithm 5 pictures a new strategy where Nonsingd is
also computed in parallel. Let g be the number of Gauss quadrature points.

14 DEVELOPMENT 3.2

Algorithm 5 Creates H,G ∈ C(3m)×(3n)

1: procedure Ghmatecd_nonsingd
2: for j := 1, n do
3: for i := 1,m do
4: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
5: Allocate Hbuffer and Gbuffer, buffer of matrices 3× 3 of size g2
6: if i 6= j then
7: for y := 1, g do
8: for x := 1, g do
9: Hbuffer(x, y)← GenerateMatrixH(i, j, x, y)

10: Gbuffer(x, y)← GenerateMatrixG(i, j, x, y)

11: Gelement← SumAllMatricesInBuffer(Gbuffer)
12: Helement← SumAllMatricesInBuffer(Hbuffer)
13: G[ii : ii+ 2][jj : jj + 2]← Gelement
14: H[ii : ii+ 2][jj : jj + 2]← Helement

15: procedure Ghmatecd_Sing_de
16: for i := 1,m do
17: ii := 3(i− 1) + 1
18: Gelement,Helement← Sing_de(i)
19: G[ii : ii+ 2][ii : ii+ 2]← Gelement
20: H[ii : ii+ 2][ii : ii+ 2]← Helement

21: procedure Ghmatecd
22: Ghmatecd_Nonsingd()
23: Ghmatecd_Sing_de()

The Ghmatecd_Nonsingd routine can be implemented as a CUDA kernel. In a CUDA
block, g× g threads are created to compute in parallel the two nested loops in lines 2 and 3,
allocating spaces in the shared memory to keep the matrix buffers Hbuffer and Gbuffer.
Since these buffers contain matrices of size 3 × 3, nine of these g × g threads can be used
to sum all matrices, because one thread can be assigned to each matrix entry, unless g < 3.
Note that g is also upper-bounded by the amount of shared memory available in the GPU.
Launching m×n blocks to cover the two nested loops in lines 2 to 3 will generate the entire
H and G without the Sing_de part. The Ghmatecd_Sing_de routine can be parallelized
with a simple OpenMP Parallel for clause, and it will compute the remaining H and
G.

A careful examination of Sing_de lead us to conclude that, algorithmically, it is very
similar to Nonsingd with a special logic to overcome singularity issues. If we merge both
procedures in one, then there would be no need to compute the diagonal of H and G using
the CPU. Algorithm 6 captures this idea.

3.3 GHMATECE OPTIMIZATION AND PARALLELIZATION 15

Algorithm 6 Creates H,G ∈ C(3m)×(3n)

1: procedure Ghmatecd
2: for j := 1, n do
3: for i := 1,m do
4: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
5: Allocate Hbuffer and Gbuffer, buffer of matrices 3× 3 of size g2
6: for y := 1, g do
7: for x := 1, g do
8: Hbuffer(x, y)← GenerateMatrixH(i, j, x, y)
9: Gbuffer(x, y)← GenerateMatrixG(i, j, x, y)

10: if i == j then
11: OvercomeSingularity(i,&Hbuffer(x, y),&Gbuffer(x, y))
12: Gelement← SumAllMatricesInBuffer(Gbuffer)
13: Helement← SumAllMatricesInBuffer(Hbuffer)
14: G[ii : ii+ 2][jj : jj + 2]← Gelement
15: H[ii : ii+ 2][jj : jj + 2]← Helement

Algorithm 6 can be implemented as a CUDA kernel analogously as Ghmatecd_Nonsingd.
This strategy has the advantage of only using the GPU to compute the entire H and G and
there are no idle blocks as in Algorithm 5, but tests show a significant loss of precision in
this version when compared to the previous one.

3.3 Ghmatece Optimization and Parallelization
Ghmatece is a routine developed to create both the H and G matrices for the static

problem described in equation (2.2). Except for RIGID routine, a procedure designed to
calculateH diagonal by considering the rigid body movement, it is very similar to Ghmatecd
routine as described by Algorithm 7.

Algorithm 7 Creates H,G ∈ R(3m)×(3n)

1: procedure Ghmatece
2: for j := 1, n do
3: for i := 1,m do
4: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
5: if i == j then
6: Gelement,Helement← Singge(i) . two 3× 3 real matrices
7: else
8: Gelement,Helement← Nonsinge(i, j)
9: G[ii : ii+ 2][jj : jj + 2]← Gelement

10: H[ii : ii+ 2][jj : jj + 2]← Helement

11: Rigid(H)

12: procedure Rigid(H)
13: for i := 1,m do
14: for j := 1, n do
15: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
16: if i 6= j then
17: H[ii : ii+2][ii : ii+2]← H[ii : ii+2][ii : ii+2]+H[ii : ii+2][jj : jj+2]

16 DEVELOPMENT 3.5

The parallelization technique presented in Algorithm 5 can be applied to Ghmatece
because Nonsinge operates in the same way as Nonsingd, but it computes the integral of
the static nuclei in Equation (2.1). Unfortunately, since Singgemakes 4 calls to Nonsinge,
the strategy presented in algorithm 6 cannot be deployed efficiently because it would generate
too much workload to a group of blocks.

For the RIGID procedure, it has no interdependency between lines and thus it can be
parallelized using the !$OMP PARALLEL DO pragma.

3.4 Linear System Solving Optimization
In order to compute all regions surface forces and displacements, a linear system can be

assembled from the matrices H and G from the dynamic problem, which means solving:

Ax = b (3.1)

where A is a square nonsingular complex matrix. As described in section 2.3, the LU de-
composition with partial pivoting can be deployed to solve it.

The original code used a sequential implementation provided by Compaq within a routine
called CGESV. In order to explore multiple CPUs, a library called OpenBLAS implements
this routine taking advantage of multicore architectures.

A Library named MAGMA implements the LU decomposition with GPU acceleration
within a function named magma_cgesv_gpu that shows good results for this application.

3.5 Interec Paralelization and Optimization
Interec is a routine designed to calculate displacements and tensions over internal

points. Such routine can be broken into two routines: Interec1, a routine designed to
calculate a vector d ∈ C3L containing the displacements; and Interec2, a routine that
calculates a vector s ∈ C9L containing the tensions, where L is the number of internal points
and m is the number of boundary elements. Algorithm 8 sketches this routine.

3.5.1 Interec1 Parallelization

Althrough Interec1 calls Nonsingd, its results differs significally from Ghmatecd
because the inputs are different.

Let now di be the section d[ii : ii + 2], that is, di is a vector of size 3. Analogously, Let
bj and uj be b[jj : jj + 2] and u[jj : jj + 2]. Let Helement

ij and Gelement
ij be the two results

from the Nonsingd routine from the step i, j. Then line 6 of Algorithm 8 can be expressed
mathematically as:

di =
m∑
j=1

Gelement
ij bj −Helement

ij uj (3.2)

This can be reorganized as:

di =

(
m∑
j=1

Gelement
ij bj

)
−

(
m∑
j=1

Helement
ij uj

)
(3.3)

3.5 INTEREC PARALELIZATION AND OPTIMIZATION 17

Algorithm 8 Creates d ∈ C3L, s ∈ C9L

1: procedure Interec1
2: for j := 1,m do
3: for i := 1, L do
4: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
5: Gelement, Helement ← Nonsingd(i, j)
6: d[ii : ii+ 2]← d[ii : ii+ 2] +Gelement × b[ii : ii+ 2]−Helement × b[ii : ii+ 2]

7: procedure Interec2
8: for i := 1, L do
9: for j := 1,m do

10: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
11: Z, S ← Sigmaec(i, j)
12: for k = 1, 3 do
13: kk := 9(j − 1) + 3(k − 1) + 1
14: s[kk : kk+2]← s[kk : kk+2]+D[k]×d[kk : kk+2]−S[k]×d[kk : kk+2]

15: Interec1()
16: Interec2()

Lets define two matrices H ∈ C(3L)×(3m) and G ∈ C(3L)×(3m) such that Hij = Helement
ij

and Gij = Gelement
ij . Now the entire vector d can be expressed as:

d = Gb−Hu (3.4)

Matrices H and G in Eq. (3.4) can be assembled analogously as in Algorithm 6 just with-
out special logic to overcome singularity issues (remove lines 10 and 11 of such algorithm).
After that, just use cuBLAS to multiply Hu and Gb, and subtract the resulting vectors.
Algorithm 9 illustrates this approach.

Algorithm 9 Creates d ∈ C3L

1: procedure Interec1
2: for j := 1,m do
3: for i := 1, L do
4: ii := 3(i− 1) + 1; jj := 3(j − 1) + 1
5: Allocate Hbuffer and Gbuffer, buffer of matrices 3× 3 of size g2
6: for y := 1, g do
7: for x := 1, g do
8: Hbuffer(x, y)← GenerateMatrixH(i, j, x, y)
9: Gbuffer(x, y)← GenerateMatrixG(i, j, x, y)

10: Gelement← SumAllMatricesInBuffer(Gbuffer)
11: Helement← SumAllMatricesInBuffer(Hbuffer)
12: G[ii : ii+ 2][jj : jj + 2]← Gelement
13: H[ii : ii+ 2][jj : jj + 2]← Helement

14: d← Hu−Gb

3.5.2 Interec2 Parallelization

Due to the deadline, the Interec2 routine was not parallelized using GPUs, althrough
an OpenMP version is implemented.

Chapter 4

Methods and Results

4.1 Methods
Matrix norms were used to assert the correctness of our results. Let A ∈ Cm×n. Watkins

(2004) defines matrix 1-norm as:

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij| (4.1)

All norms have the property that ‖A‖ = 0 if and only if A = 0. Let u and v be two
numerical algorithms that solve the same problem, but in a different way. Now let yu be the
result computed by u and yv be the result computed by v. The error between these two
values can be measured computing ‖yu − yv‖. The error between CPU and GPU versions of
H and G matrices was computed by calculating ‖Hcpu −Hgpu‖1 and ‖Gcpu −Ggpu‖1.

Gfortran and CUDA 8.0 were used to compile the application. The main flags used in
Gfortran were -Ofast -march=native -funroll-loops -flto. The flags used in
CUDA nvcc compiler were: -use_fast_math -O3 -Xptxas -opt-level=3
-maxrregcount=32 -Xptxas -allow-expensive-optimizations=true .

For experimenting, there were four data samples as shown in Table 4.1. Each routine
defines the label gpu in its context, but the cpu label means that the routine was executed
only in CPU.

Before any data collection, a warm up procedure is executed, which consists of running
the application with the sample three times without getting any result. Afterward, all exper-
iments were executed 30 times per sample. Each execution produced a file with total time
elapsed, where a script computed averages and standard deviations for all experiments.

The graphs labels consist of the implementation name concatenated with the number
of OpenMP threads used, for example, cpu8 implies that only the CPU was used with 8
OpenMP threads. All its points are the mean of the time in seconds of 30 executions, and
the errorbars illustrate a 95% confidence interval.

The number of threads used were defined considering the number of CPU cores the testing
machine has. We used two machines for the tests, BrucutuIV and Venus, as defined in
Appendix A

GPU total time was computed by the sum of 5 elements: (1) total time to move data to
GPU, (2) launch and execute the kernel, (3) elapsed time to compute the result, (4) time to
move data back to main memory, (5) time to compute any remaining parts in the CPU. The
elapsed time was computed in seconds with the OpenMP library function OMP_GET_WTIME.
This function calculates the elapsed wall clock time in seconds with double precision. All

19

20 METHODS AND RESULTS 4.2

Table 4.1: Data experiment set

Number of Mesh elements 240 960 2160 4000 14400
Number of Boundary elements 100 400 900 1600 6400

experiments set the Gauss Quadrature Points to 8 and the number of Internal Points to 10.

4.2 Results and Isolated Conclusions

4.2.1 Ghmatecd Routine

This routine has three parallel implementations: (1) Using only CPU threads (cpu); (2)
Using GPU for the nonsingular part and the CPU for the singular part, as described by
Algorithm 5 (gpu); (3) Using GPU for both singular and nonsingular parts, as described by
Algorithm 6 (gpu_sing).

BrucutuIV Data

The logarithmic scale graphic in Figure 4.1 illustrates the results for BrucutuIV. We
removed the points from the graph that represents the sequential data for legibility.

The speedup acquired in the 14400 mesh elements sample with cpu48, cpu24 gpu8
and gpu_sing1 with respect to the sequential algorithm are 25, 19, 22 and 22 respectively
in BrucutuIV. For this sample we can see that a single Tesla K40 was faster than a single
Xeon E5-2650 v4, but slower than two of those processors.

Notice that with respect to time, gpu8 and cpu_sing1 behaves very similarly, but
there is an interesting observation about the error (computed as described in Section 4.1),
as illustrated in Figure 4.2.

Since there is an error gap in the H matrix between the gpu8 and gpu_sing1, it
suggests that most errors concentrate around computation of the singular case and it is
more sensible to floating point errors, thus better precision is required here.

As a conclusion, the presented method can be used to accelerate the overall perfor-
mance of the mentioned routine, and a load balancer can be developed from these results for
even higher speedups because of two items: (1) similar computational time elapsed between
gpu_sing1 and cpu24 in the 14400 sample, and (2) the fact that gpu_sing1 only uses
one CPU thread, allowing other threads to also consume workload.

Venus Data

Here the obtained speedup was 3, 100 and 100 respectively for the cpu4, gpu4 and
gpu_sing1 on the 4000mesh sample. We could not run the 14400 sample because it requires
around 16 Gigabytes of RAM, but the machine only had 8 Gigabytes. In this machine, the
GeForce GTX980 was faster than the AMD A10-7700K even for the 960 sample. This was due
to lower CPU-GPU memory transfer latency. The logarithm graphic at Figure 4.3 illustrates
the results.

The errors followed the same behavior as discussed in BrucutuIV Data section, as il-
lustrated in Figure 4.4. Notice that the errors inH are worse when compared to BrucutuIV.

From these data, we can conclude that the presented method can also accelerate the
performance in the case that there is a low number of CPU cores available, and such CPU
cores can be allocated to compute the singular case to reduce errors.

4.2 RESULTS AND ISOLATED CONCLUSIONS 21

4.2.2 Ghmatece Routine

This routine has two parallel implementations: (1) Using only CPU threads (cpu); (2)
Using GPU for the nonsingular part and the CPU for the singular part (gpu), as presented
by the technique in Algorithm 5. Here we present the results for the Ghmatece routine
without the Rigid part. We present in this way because we present a detailed analysis of
the Rigid routine also in this chapter.

BrucutuIV Data

The logarithm graphic in Figure 4.5 illustrates the results for BrucutuIV. The speedup
acquired in the 14400 mesh elements sample with cpu24, cpu48, and gpu8 with respect to
the sequential algorithm are 15, 19, and 13 respectively in BrucutuIV. For this sample, we
can see that the Tesla K40 was slower than a single Xeon E5-2650 v4. Although Ghmatece
routine is similar to Ghmatecd, it does fewer computations and thus offloading this task
alone to the GPU may not be attractive.

As for the error, the 14400 was the only sample that had errors greater than 10−5. Since
the || • ||1 grows as the number of matrix rows increases, this result was expected. Figure
4.6 illustrates the results.

As a conclusion, the GPU can be used to speedup this routine, but a load balancer is
required for a better resource usage because of: (1) Smaller speedup when compared to the
CPU implementation with 24 threads and (2) better than the theoretical possible speedup
with only 8 CPU threads.

Venus Data

The logarithm graphic in Figure 4.7 illustrates the results for Venus. From the figure, we
can conclude that for all samples but the 240 meshes there were speedups. The speedup ac-
quired in the 4000 mesh elements sample with cpu4 and gpu4 with respect to the sequential
algorithm are 2 and 32 respectively. As for the error, all results were below 10−6

As a conclusion, for this hardware, the presented implementation provides acceleration
if the number of meshes is large enough.

4.2.3 Rigid Routine

We only present a parallel implementation of this routine using the CPU due to the low
time consumption of it when compared to the other analysed routines. We only present the
BrucutuIV data because the 14400 sample was the only one that provides a meaningful
information about the elapsed time.

BrucutuIV Results

Figure 4.8 illustrates the results. The speedup acquired in the 14400 mesh elements
sample with cpu24 and cpu48 with respect to the sequential implementation are 12 and
13 respectively in BrucutuIV. Since all those results but the sequential are below 1s and
this routine is called only once in the entire program, there is no requirement for vast
improvements here.

22 METHODS AND RESULTS 4.2

4.2.4 Linear System Solving Routine

This routine has two parallel implementations: (1) Using OpenBLAS CGESV (cpu) and
(2) Using MAGMA’s cgesv_gpu routine (gpu).

BrucutuIV results

Figure 4.9 illustrates the results for BrucutuIV. The acquired speedup in the 14400
mesh elements sample in cpu24, cpu48, gpu1 and gpu48 with respect to the sequential
algorithm are 10, 7, 29 and 30, respectively.

From these results, we can conclude that MAGMA’s cgesv_gpu can be used to acceler-
ate programs that require solving dense linear systems. Notice the slowdown when comparing
cpu24 with cpu48. We could not identify its causes, but we suspect of cache related issues
because there are two processors in this machine, thus cache invalidation may be a problem.

Venus results

Figure 4.10 illustrates the results for Venus. The acquired speedup in the 4000 mesh
elements sample in cpu4 and gpu4 are 2 and 38, and the BrucutuIV conclusions about
this routine also prevails in this machine.

4.2.5 Interec1 Routine

Venus Results

The logarithm graphic in Figure 4.11 illustrates the results for Venus. From the figure,
we can conclude that for all samples there were speedups. The speedup acquired in the 4000
mesh elements sample with cpu4 and gpu1 with respect to the sequential algorithm are 3
and 17 respectively. As for the error, all results were below 10−6.

4.2 RESULTS AND ISOLATED CONCLUSIONS 23

Average of elapsed time in seconds running Ghmatecd in BrucutuIV

●

●

●

●

●

10−1

10−0.5

100

100.5

101

101.5

102

240 960 2160 4000 14400
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu24 cpu48 gpu_sing1 gpu8

Figure 4.1: Ghmatecd: Time elapsed by each implementation in BrucutuIV

Errors between computations of Ghmatecd in BrucutuIV

●

●

●

●

●

10−6

10−5.5

10−5

10−4.5

10−4

10−3.5

240 960 2160 4000 14400
Mesh size

E
rr

or

● gpu G gpu H gpu_sing G gpu_sing H

Figure 4.2: Ghmatecd: Error of each implementation compared with the CPU implementation in
BrucutuIV

24 METHODS AND RESULTS 4.2

Average of elapsed time in seconds running Ghmatecd in Venus

●

●

●

●

10−0.5

100

100.5

101

101.5

102

240 960 2160 4000
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu4 gpu4 gpu_sing1

Figure 4.3: Ghmatecd: Time elapsed by each implementation in Venus

Errors between computations of Ghmatecd in BrucutuIV

●

●

●

●

10−5.5

10−5

10−4.5

10−4

10−3.5

10−3

240 960 2160 4000
Mesh size

E
rr

or

● gpu G gpu H gpu_sing G gpu_sing H

Figure 4.4: Ghmatecd: Error of each implementation compared with the CPU implementation in
Venus

4.2 RESULTS AND ISOLATED CONCLUSIONS 25

Average of times of Ghmatece in BrucutuIV

●

●

●

●

●

10−1

100

101

102

103

240 960 2160 4000 14400
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu24 cpu48 gpu8

Figure 4.5: Ghmatece: Time elapsed by each implementation in BrucutuIV

Errors between computations of Ghmatece in BrucutuIV

●

●

●

●

●

10−6.5

10−6

10−5.5

10−5

240 960 2160 4000 14400
Mesh size

E
rr

or

● gpu G gpu H

Figure 4.6: Ghmatece: Error of each implementation compared with the CPU implementation in
BrucutuIV

26 METHODS AND RESULTS 4.2

Average of elapsed time in seconds running Ghmatece in Venus

●

●

●

●

10−1.5

10−1

10−0.5

100

100.5

101

101.5

240 960 2160 4000
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu4 gpu4

Figure 4.7: Ghmatece: Time elapsed by each implementation in Venus

Average of elapsed time in seconds running Rigid in BrucutuIV

●

●

●

●

●

10−3

10−2

10−1

100

101

240 960 2160 4000 14400
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu24 cpu48

Figure 4.8: Rigid: Time elapsed by each implementation in BrucutuIV

4.2 RESULTS AND ISOLATED CONCLUSIONS 27

Average of elapsed time in seconds running Linsolve in BrucutuIV

●

●

●

●

●

10−2

10−1

100

101

102

240 960 2160 4000 14400
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu24 cpu48 gpu1 gpu48

Figure 4.9: Linsolve: Time elapsed by each implementation in BrucutuIV

Average of elapsed time in seconds running Linsolve in Venus

●

●

●

●

10−2

10−1

100

101

240 960 2160 4000
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu4 gpu4

Figure 4.10: Linsolve: Time elapsed by each implementation in Venus

28 METHODS AND RESULTS 4.2

Average of times of Interec1 in Venus

●

●

●

●

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

240 960 2160 4000
Mesh size

M
ea

n
(s

ec
on

ds
)

● cpu1 cpu4 gpu1

Figure 4.11: Interec1: Time elapsed by each implementation in Venus

Chapter 5

Final Conclusions

5.1 BEM Efficiency as a Computational Tool
We can discuss the efficiency of BEM as a computational tool from the obtained results.
Since all costly routines of BEM can be paralellized, its implementation can take advan-

tage of multicore machines and GPUs to reduce the time required in simulations.
Since the GeForce GTX 980 provided stunning resuts in Venus, a home computer paired

with such GPU can execute the simulation faster without investing into a more costly server.
Similar results were published in WSCAD-WIC conference, earning second place in the best
paper category (Belinassi et al., 2017).

When compared to the original program, the total time elapsed in the simulation was
reduced to a margin that is feasible for bigger mesh numbers such as the 14400 sample,
as shown in Figure 5.1. It is possible to archive even more speedups if a load balancer is
implemented in a way that it can use both CPU and GPU in parallel.

If there is a major concern about errors in the simulation, perhaps caution is required
when offloading the task to the GPU, as the mainly graphic on Figure 4.2 indicates.

As a final conclusion, the program can now be used to simulate cases where the original
couldn’t because of time constraints or unecessary memory usage. It also has no issues
running in modern Linux distribuitions once all project dependencies are installed.

5.2 As a Programmer
Adding features regarding to a technology that did not exist in the time period of the

program’s development was a challenge at first mainly because of sparse support for the
original language nowdays. Sure, calling C from Fortran in the way we presented enabled
the current solution, but what if it couldn’t be done in that way? That could be the case
for even older systems.

Also, implementing numeric algorithms is no easy task because minor mistakes on a
variable cause an absurd impact on results, but without crashing the program. Using au-
tomated tests to isolate the faulty routine is determinant for solving the problem because
such incorrect results propagate to subsequent routines, causing the problem’s source to be
lost. Once such routine is detected, GDB is useful to determine what variable is the cause
of such undesired behaviour. Tests are important and must not be underestimated.

As for the GPU development, testing an code is painful as we are unable to run X11
and cuda-gdb in the same GPU simultaneously. Additionaly, sometimes a SEGFAULT in
a CUDA kernel caused the computer to hang, requiring a complete reboot of the machine.

29

30 FINAL CONCLUSIONS

Total elapsed time in BrucutuIV

●

●

●

●

●

100

101

102

103

240 960 2160 4000 14400
Mesh size

T
im

e

● cpu 1 thread cpu 48 threads gpu 48 thread

Figure 5.1: Total elapsed time in BrucutuIV. One data per sample

One last item is that it is not possible to allocate multiple arrays in CUDA’s shared memory
dynamically, requiring pointer magic to allocate multiple arrays into a single array. All these
points require improvements.

5.3 Future Works
The presented implementation can still be improved. A load balancer can be developed

for distribuiting workload between CPU and GPU for constructing the H and G matrices
from Ghmatece and Ghmatecd routines for better speedups.

The linear system solving routine can run quickier simply by keeping the H matrix in
GPU memory. This is not already implemented due to the structure of the current program,
a refactoration is necessary.

A better parallel strategy for reducing the matrix (as illustrated by the function
SumAllMatricesInBuffer of Algorithms 5 and 6) is required for better speedups. This
can lead to even better speedups.

An implementation of Interec2 in GPUs can be attractive for samples with a large
number of internal points, providing better speedups to the application.

Appendix A

Computers used in tests

• Computer BrucutuIV:

Processor: 2x Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz

Cores: 24

Threads: 48

Number of OpenMP threads used in experiments: 1, 8, 24, 48

GPU: NVIDIA Corporation GK110BGL [Tesla K40c]

RAM: 378G

Version of GFortran: 4.9.2

Topology: Figure A.1

• Computer Venus:

Processor: AMD A10-7700K Radeon R7, 10 Compute Cores 4C+6G

Cores: 4

Threads: 4

Number of OpenMP threads used in experiments: 1, 4

RAM: 8G

GPU: NVIDIA Corporation GM204 [GeForce GTX 980]

Version of GFortran: 5.4.0

Topology: Figure A.2

31

32 APPENDIX A

M
a
ch

in
e
 (

3
7

8
G

B
 t

o
ta

l)

N
U

M
A

N
o
d
e
 P

#
0

 (
1

8
9

G
B

)

P
a
ck

a
g
e
 P

#
0

L3
 (

3
0

M
B

)

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

0

P
U

 P
#

2
4

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1

P
U

 P
#

2
5

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

2

P
U

 P
#

2
6

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

3

P
U

 P
#

2
7

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

4

P
U

 P
#

2
8

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5

P
U

 P
#

5

P
U

 P
#

2
9

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

8

P
U

 P
#

6

P
U

 P
#

3
0

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

9

P
U

 P
#

7

P
U

 P
#

3
1

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
0

P
U

 P
#

8

P
U

 P
#

3
2

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
1

P
U

 P
#

9

P
U

 P
#

3
3

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
2

P
U

 P
#

1
0

P
U

 P
#

3
4

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
3

P
U

 P
#

1
1

P
U

 P
#

3
5

P
C

I
8

0
8

6
:1

5
2

1

e
th

0

P
C

I
8

0
8

6
:1

5
2

1

e
th

1

P
C

I
8

0
8

6
:1

5
2

1

e
th

2

P
C

I
8

0
8

6
:1

5
2

1

e
th

3

P
C

I
8

0
8

6
:8

d
6

2

P
C

I
1

a
0

3
:2

0
0

0

ca
rd

1

co
n
tr

o
lD

6
4

P
C

I
8

0
8

6
:8

d
0

2

sd
d

sd
c

sd
b

sd
a

N
U

M
A

N
o
d
e
 P

#
1

 (
1

8
9

G
B

)

P
a
ck

a
g
e
 P

#
1

L3
 (

3
0

M
B

)

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

0

P
U

 P
#

1
2

P
U

 P
#

3
6

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1

P
U

 P
#

1
3

P
U

 P
#

3
7

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

2

P
U

 P
#

1
4

P
U

 P
#

3
8

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

3

P
U

 P
#

1
5

P
U

 P
#

3
9

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

4

P
U

 P
#

1
6

P
U

 P
#

4
0

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

5

P
U

 P
#

1
7

P
U

 P
#

4
1

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

8

P
U

 P
#

1
8

P
U

 P
#

4
2

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

9

P
U

 P
#

1
9

P
U

 P
#

4
3

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
0

P
U

 P
#

2
0

P
U

 P
#

4
4

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
1

P
U

 P
#

2
1

P
U

 P
#

4
5

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
2

P
U

 P
#

2
2

P
U

 P
#

4
6

L2
 (

2
5

6
K

B
)

L1
d
 (

3
2

K
B

)

L1
i
(3

2
K

B
)

C
o
re

 P
#

1
3

P
U

 P
#

2
3

P
U

 P
#

4
7

P
C

I
1

0
d
e
:1

0
2

4

re
n
d
e
rD

1
2

8

ca
rd

0

H
o
st

:
b
ru

cu
tu

IV

In
d
e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
se

g
 1

3
 n

o
v
 2

0
1

7
 1

1
:5

6
:4

1
 -

0
2

Figure A.1: Topology of BrucutuIV.

COMPUTERS USED IN TESTS 33

M
a
ch

in
e
 (

8
0

0
5

M
B

)

P
a
ck

a
g
e
 P

#
0

L2
 (

2
0

4
8

K
B

)

L1
i
(9

6
K

B
)

L1
d

 (
1

6
K

B
)

C
o
re

 P
#

0

P
U

 P
#

0

L1
d
 (

1
6

K
B

)

C
o
re

 P
#

1

P
U

 P
#

1

L2
 (

2
0

4
8

K
B

)

L1
i
(9

6
K

B
)

L1
d
 (

1
6

K
B

)

C
o
re

 P
#

2

P
U

 P
#

2

L1
d
 (

1
6

K
B

)

C
o
re

 P
#

3

P
U

 P
#

3

P
C

I
1

0
d

e
:1

3
c0

ca
rd

0

re
n
d

e
rD

1
2

8

P
C

I
1

0
e
c:

8
1

6
8

e
th

0

P
C

I
1

0
2

2
:7

8
0

1

sd
a

H
o
st

:
v
e
n
u
s

In
d
e
x
e
s:

 p
h
y
si

ca
l

D
a
te

:
S
e
g
 1

3
 N

o
v
 2

0
1

7
 1

5
:4

1
:2

9
 -

0
2

Figure A.2: Topology of Venus.

Bibliography

Ascher e Greif(2011) Uri M Ascher e Chen Greif. A first course on numerical methods.
SIAM. Citado na pág. 4

Belinassi et al.(2017)Giuliano Belinassi, Rodrigo Siqueira, Ronaldo Carrion, Alfredo Gold-
man e Marco Gubitoso. Optimizing a boundary elements method for stationary elastody-
namic problems implementation with gpus. WSCAD–WIC, 18:51–56. Citado na pág. 29

Carrion(2002) Ronaldo Carrion. Uma Implementação do Método dos Elementos de Con-
torno para problemas Viscoelastodinâmicos Estacionários Tridimensionais em Domínios
Abertos e Fechados. Tese de Doutorado, Universidade Estadual de Campinas. Citado na pág.

2

Corden(2010) Martyn Corden. Avoiding relocation errors when building applications
with large global or static data on intel64 linux. https://software.intel.com/en-us/articles/
avoiding-relocation-errors-when-building-applications-with-large-global-or-static-data-on-intel64/,
2010. Accessed: 2017-11-23. Citado na pág. 11

devTalk(2012) NVIDIA devTalk. How to optimize data transfers in cuda c/c++. https:
//devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/, 2012. Ac-
cessed: 2017-08-06. Citado na pág. 9

Dominguez(1993) Jose Dominguez. Boundary elements in dynamics. Wit Press. Citado na

pág. 1

GNU() GNU. Gnu binutils. https://www.gnu.org/software/binutils/. Accessed: 2017-05-
08. Citado na pág. 11

Hildebrand(1987) Francis Begnaud Hildebrand. Introduction to numerical analysis.
Courier Corporation. Citado na pág. 5

Katsikadelis(2016) John T Katsikadelis. The Boundary Element Method for Engineers
and Scientists: Theory and Applications. Academic Press. Citado na pág. 1

Kirk e Wen-Mei(2016) David B Kirk e W Hwu Wen-Mei. Programming massively parallel
processors: a hands-on approach. Morgan kaufmann. Citado na pág. 8

Love(2005) Robert Love. Linux Kernel Development (2Nd Edition) (Novell Press). Novell
Press. ISBN 0672327201. Citado na pág. 8

Pacheco(2011) Peter Pacheco. An introduction to parallel programming. Elsevier. Citado na

pág. 7, 8

Tanenbaum(2009) Andrew Tanenbaum. Modern operating systems. Pearson Education,
Inc.,. Citado na pág. 8

35

https://software.intel.com/en-us/articles/avoiding-relocation-errors-when-building-applications-with-large-global-or-static-data-on-intel64/
https://software.intel.com/en-us/articles/avoiding-relocation-errors-when-building-applications-with-large-global-or-static-data-on-intel64/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://devblogs.nvidia.com/parallelforall/how-optimize-data-transfers-cuda-cc/
https://www.gnu.org/software/binutils/

36 BIBLIOGRAPHY

Torky e Rashed(2017) Ahmed A Torky e Youssef F Rashed. Gpu acceleration of the
boundary element method for shear-deformable bending of plates. Engineering Analysis
with Boundary Elements, 74:34–48. Citado na pág. 9

Watkins(2004) David S Watkins. Fundamentals of matrix computations, volume 64. John
Wiley & Sons. Citado na pág. 6, 7, 19

	Introduction
	Motivation
	Research Approach
	Objectives
	Monograph Structure

	Theoretical Background
	The Boundary Elements Method
	Gaussian Quadrature
	LU Decomposition
	Parallel Programming
	CUDA Programming

	Related Works

	Development
	Calling CUDA from Fortran 77
	Ghmatecd Optimization and Parallelization
	Ghmatece Optimization and Parallelization
	Linear System Solving Optimization
	Interec Paralelization and Optimization
	Interec1 Parallelization
	Interec2 Parallelization

	Methods and Results
	Methods
	Results and Isolated Conclusions
	Ghmatecd Routine
	Ghmatece Routine
	Rigid Routine
	Linear System Solving Routine
	Interec1 Routine

	Final Conclusions
	BEM Efficiency as a Computational Tool
	As a Programmer
	Future Works

	Computers used in tests
	Bibliography

