
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/4226783

QoS	awareness	support	in	Web-Service
semantics

CONFERENCE	PAPER	·	MARCH	2006

DOI:	10.1109/AICT-ICIW.2006.156	·	Source:	IEEE	Xplore

CITATIONS

40

READS

22

4	AUTHORS,	INCLUDING:

Ioanna	Roussaki

National	Technical	University	of	Athens

86	PUBLICATIONS			621	CITATIONS			

SEE	PROFILE

Ioannis	V.	Papaioannou

National	Technical	University	of	Athens

35	PUBLICATIONS			156	CITATIONS			

SEE	PROFILE

Miltiades	Anagnostou

National	Technical	University	of	Athens

145	PUBLICATIONS			860	CITATIONS			

SEE	PROFILE

Available	from:	Ioannis	V.	Papaioannou

Retrieved	on:	01	February	2016

https://www.researchgate.net/publication/4226783_QoS_awareness_support_in_Web-Service_semantics?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_2
https://www.researchgate.net/publication/4226783_QoS_awareness_support_in_Web-Service_semantics?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_3
https://www.researchgate.net/?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_1
https://www.researchgate.net/profile/Ioanna_Roussaki?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Ioanna_Roussaki?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Ioanna_Roussaki?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Ioannis_Papaioannou?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Ioannis_Papaioannou?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Ioannis_Papaioannou?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_7
https://www.researchgate.net/profile/Miltiades_Anagnostou?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_4
https://www.researchgate.net/profile/Miltiades_Anagnostou?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_5
https://www.researchgate.net/institution/National_Technical_University_of_Athens?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_6
https://www.researchgate.net/profile/Miltiades_Anagnostou?enrichId=rgreq-f9163cd0-efa5-4a10-bcf4-4b2ebe776184&enrichSource=Y292ZXJQYWdlOzQyMjY3ODM7QVM6OTg4NDIwOTk4NDcxNzRAMTQwMDU3NzIwMTM4MA%3D%3D&el=1_x_7

QoS awareness support in Web-Service semantics

Dimitrios T. Tsesmetzis, Ioanna G. Roussaki, Ioannis V. Papaioannou, Miltiades E. Anagnostou

School of Electrical and Computer Engineering, National Technical University of Athens,
Greece

{dtsesme,nanario,jpapai,miltos}@telecom.ntua.gr

Abstract

 Web Services (WSs) are a new breed of web
application that have brought out quite challenging
research issues. One of these is the establishment of an
interoperable semantic framework suitable to
represent all potential features of WSs. Apart from the
functional properties that have already been modeled
via standardized tools, there are also the non-
functional features of WSs i.e. their Quality-of-Service,
which in most cases are not included in the WS
description. Nevertheless, integrating QoS features in
WS profiles is to the advantage of both users and
providers, as it supports QoS-aware WS selection and
composition addressing the user’s QoS requirements,
while enabling WS providers to increase their profit in
the e-business domain. This paper is concerned with
the creation of a QoS ontology framework adequate for
WS provision. It has sprang from the work carried out
in the IST-Amigo1 Integrated Project for Ambient
Intelligence (AmI) homes, which aims to develop an
open, standardized platform for the provision of QoS-
aware AmI Web Services in home environments.

1. Introduction

Web Services (WSs) [1] are considered to be the
Web’s next revolution and the future of e-business.
They appeared just 5 years ago and have been one of
the most popular research fields ever since. These
services are “self-contained, self-describing, modular
applications that can be published, located, and
invoked across the Web. Web services perform
functions that can be anything from simple requests to
complicated business processes. … Once a Web
service is deployed, other applications (and other Web

1 This work has in part been supported by the European
Union project “Amigo-Ambient intelligence for the
networked home environment”. More information on
www.amigo-project.org.

services) can discover and invoke the deployed
service.” [2]. Considerable work has been made to
develop adequate middleware for the deployment of
Web Services. Towards this end, various technologies
have been used such as [3]: XML2 (Extensible Markup
Language), SOAP3 (Simple object Access Protocol),
UDDI4 (Universal Discovery, Description and
Integration), WSDL5 (Web Services Description
Language), SOA (Service-Oriented Architecture) [4],
etc. Some of the relevant research efforts have focused
on developing ontologies that capture the WSs’ main
properties. Nevertheless, little work has been done to
represent the non-functional features of WSs [5], the
most critical part of which concerns their Quality of
Service (QoS).

Both users and providers can benefit greatly from
the incorporation of QoS features in WS profiles. On
the one hand, QoS profiles of WSs are crucial in
determining which service best addresses the user
needs. They have the potential to optimize the user’s
WS-experience regarding features such as
performance, reliability, security, integrity, and cost, in
case the user’s QoS preferences are considered by the
WS selection and composition. On the other hand, QoS
can give WS providers a significant competitive
advantage in the e-business domain, as QoS-aware
services meet user needs better and thus attract more
customers. Adopting a WS best-effort policy that does
not provide any guarantees on response time, security,
throughput, or availability, may still be acceptable in
simple WSs. Nevertheless, such policies are totally
unacceptable in more demanding cases [6], when for
instance dynamic composition of heterogeneous WSs
provided by different administrative domains is
required. Moreover, WS providers can increase their
profits, as considering the QoS profiles in dynamic

2 http://www.w3.org/XML/
3 http://www.w3.org/TR/soap/
4 http://www.uddi.org/
5 http://www.w3.org/TR/wsdl

network resource allocation mechanisms enables them
to maximize the utilization of their infrastructure [7].

As the advantages of QoS featured WS profiles
became evident, some research initiatives focused on
building QoS semantics and ontology management
schemes for Web Services. Nevertheless, they mainly
developed QoS ontology vocabularies, identifying the
various QoS parameters that are involved in Web
Service provision [8][9]. However, as QoS parameters
can be a lot more than type-value pairs, the need to
develop a flexible, highly descriptive and widely
applicable solution for the representation of various
heterogeneous QoS parameters in a machine-
interpretable manner, while supporting enhanced
reasoning functionalities, has risen. In this paper a QoS
ontology language is introduced that provides a
standard model to formally describe arbitrary QoS
parameters. It establishes a set of rules, classes, object-
properties and data-properties that are used to represent
QoS parameters along with the relationships among
them. It has the potential to incorporate the plethora of
information concerning each QoS feature of WSs and
exhibits properties such as interoperability,
completeness, flexibility, scalability reliability, and
accuracy. Furthermore, a QoS ontology vocabulary is
provided where the various QoS concepts involved in
WS provision are identified. Thus, a robust QoS
semantic framework for WSs is built based on the QoS
ontology language and vocabulary developed, enabling
providers to increase their gains and users to enjoy
intelligent QoS-aware WSs.

The rest of the paper is structured as follows.
Section 2 introduces the research work on QoS
ontologies. Section 3 presents the QoS ontology
language designed for the needs of Web Services. In
section 4 the QoS ontology vocabulary identified is
briefly described. In section 5, the QoS ontologies
developed are instantiated for the
“MultimediaTelemedicine” Web Service example.
Finally, section 6 draws the paper conclusions and
elaborates on our future plans.

2. Literature Review

Studying the QoS ontology literature one may see
that research has focused on the design of QoS
Ontologies to be used in the discovery mechanisms of
the published web services. Nevertheless, most of these
ontologies are domain specific and not balanced
enough to be adequate for most WSs.

The framework presented in [5] is based on agents.
Service providers publish their services to registries
and agencies, and service consumers use their agents in
order to discover the desired service. The designed

ontologies (language and vocabulary) enable agent-
based dynamic Web Services selection. Although the
proposed ontology language is quite complete, the
metrics concept is absent. On the other hand, work in
[10] has focused on Metrics, Measurement Units,
Currencies and other ontologies, necessary for the QoS
management. [10] identifies the requirements of
Metrics ontologies and studies the relationships and the
dependencies between various QoS metrics. A
disadvantage of this approach is that even though the
provided analysis is quite detailed, it is limited only to
the aforementioned ontologies, not providing an
integrated solution.

[11], [12] and [13] have focused on integrating the
QoS awareness functionality in the WS discovery
mechanisms. In [11] the defined QoS ontology
language consists of three layers: the QoS profile layer,
which is used for matchmaking purposes; the QoS
property definition layer, which is used for elaborating
the property’s domain and range constraints; and the
metrics layer that provides measurement details. A
drawback of this modeling approach is that the
proposed ontology is quite limited, while the QoS
ontology vocabulary is absent. [12] has focused on
extending the matchmaking mechanisms with the
concept of the service broker. An advantage of this
approach is that it enables users to monitor the status of
the server. The proposed QoS ontology classifies the
QoS parameters provided in two main categories:
network- and server-client related parameters.
Nevertheless, it does not provide an advanced QoS
ontology, but only a simple XML Schema. A more
sophisticated approach based on a mathematical
analysis is adopted in [13]. Effort has been made to
extend the service publication and discovery
mechanisms with QoS features. To achieve this, they
exploit the finite automata theory in multidimensional
spaces. A disadvantage of this approach is that the
proposed model performs well when dealing only with
static QoS parameters.

[9] does not provide a QoS ontology language or
vocabulary specification. However, it elaborates on a
classification of QoS parameters, which can be quite
useful when attempting to design a QoS ontology
vocabulary. Finally, the MOQ (Mid-Level Ontologies
for Quality) framework presented in [14] aims to
minimize ambiguities in QoS evaluations. Four
Ontologies are defined: Requirements, Measurement,
Traceability and Quality Management. A drawback of
this approach is that it resembles an add-in to existing
ontologies rather than a complete QoS ontology.

Our work has focused on the design of a QoS
ontology language and vocabulary adequate for
arbitrary Web Services. These ontologies are quite
detailed, complete and flexible, enabling the efficient

representation of WSs even for the most complicated
and demanding cases.

3. A QoS Ontology Language for Web
Services

The designed QoS ontology language provides a
standard generic model for arbitrary QoS attributes,
while defining the nature of associations between QoS
attributes and the way they are measured. In our QoS
ontology, each QoS attribute is described by the
following classes:
• QoSParameter. QoS parameter represents a non

functional property of the service within a specific
domain. These properties may be measurable or not
and may hold relationships to each other.

• Metric. This class defines the way each QoS
parameter is assigned with a value. It is associated
with the QoSParameter class through the hasMetric
object property. Each Metric object consists of a
MetricType and a Value, which are modeled as
datatype properties having xsd:string values. The
MetricType datatype property is an enumerated
string (xsd:enumeration) that represents the
QoSParameter’s data type, e.g., int, long, string,
boolean, etc. Value is a datatype property that
formulates the QoSParameter’s value as a string.
Together with the MetricType property, the system
can easily extract the semantics of this information.
The Metric class is also related with the Unit class
via the hasUnit object property that defines the
units used to measure the QoS parameter’s
quantity. Of course each QoS parameter can either
be measurable or unmeasurable. In the latter case,
the Unit is set to null. As there are various ways to
express a physical quantity in terms of units, the
Unit class holds a relationship with the
ConversionFormula class that is introduced to
enable the transformation from one unit to another.
Thus, each Unit object is related to a
ConversionFormula, while the ConversionFormula
class holds a convertsTo object property having
range another Unit object. The QoS ontology also
supports statistical analysis elements over the
monitored QoS parameters. This functionality is
provided by the Statistics subclass of Metric that
includes various statistical functions.

• QoSImpact. The QoSImpact object property
represents the way the QoSParameter value
contributes to the service quality perceived by the
user. For instance, a reduction on the service
latency is expected to increase the quality utility for
the user. The QoSImpact property enables the

system to estimate the degree of user satisfaction
with regards to a given QoS parameter value.

• Type. The Type class represents the specific QoS
category of the QoS ontology vocabulary, where
the QoSParameter belongs to (e.g. “Jitter”,
“Cost”,). It is associated with the QoSParameter
class through the hasType object property.

• Nature. This datatype property of the QoS
parameter represents its static or dynamic nature. A
QoSParameter that is defined apriori and does not
change during the entire service session is a Static
QoSParameter, e.g. the security protocols
supported by the service. On the other hand,
QoSParameters that may vary during the service
execution time are Dynamic, e.g. the service
response time. The values of the Nature datatype
property are defined by the Service Provider and
are periodically confirmed in the user domain. The
Nature property is formulated as enumerated string,
with range values: “Static” and “Dynamic”.

• Aggregated. The QoSParameter that is composed
by two or more defined QoSParameters has the
object property of aggregation. For example, the
service response time is composed by the latency
and the request process time by the server.

• Node. The Node datatype property of the
QoSParameter identifies the network node that may
have an impact on its value. Thus, each
QoSParameter may depend on the Server node
attributes, the Client node attributes or both. It is
formulated as an enumerated string with range
values: “Client” and “Server”.

• Relationship. This class represents the way a
QoSParameter is correlated with others. It is related
to the QoSParameter class via a hasRelationship
optional object property. In order to interrelate two
QoSParameter objects the infuentialParameter
mandatory object property has been introduced,
which indicates (i.e. has range) the QoSParameter
that has an impact on the “owner” QoSParameter of
the Relationship. This approach may also handle
the case of asymmetric interdependencies between
QoS parameters. The Relationship may be
Proportional or InverselyProportional. This feature
is modeled by the IFType datatype property that is
an enumerated string with range values:
“Proportional” and “InverselyProportional”. For
example, the service response time and the
throughput are InverselyProportional parameters.
The Relationship may also be Strong, Medium or
Weak. This information is captured by the
ValidityLevel datatype property that also has an
xsd:string (xsd:enumeration) value range. The
ImpactFactor class is introduced to encapsulate the

two properties above (i.e. IFType & ValidityLevel)
that characterize the Relationship. The
hasImpactFactor object property is used to bind a
Relationship to an ImpactFactor object.
The designed QoS ontology language is presented

in Figure 1.

Figure 1. The QoS ontology language

4. The QoS Ontology Vocabulary

An extended review of the literature on QoS
taxonomies and classifications (e.g., [8] [9]) coupled
with the WSs’ requirements formed the basis of our
work towards the design of a QoS ontology vocabulary
for WSs. In this ontology, all QoS parameters are
instantiated as subclasses of the QoSParameter class.
Subsequently, an overview of the parameters identified
in the QoS vocabulary is provided.
• Performance. The Performance QoS parameter

aggregates information that mainly depends on the
properties of the network connection between the
user and the service provider nodes. The subclasses
of the Performance class are: Throughput, Latency,
ResponseTime, Jitter and ErrorRate. In general,
high performance services should provide high
throughput, low latency, fast response time, low
jitter and low error rate.

• Scalability. The Scalability QoS parameter is used
to describe the server’s ability to increase its
computing capacity and the system’s ability to
process more users' requests, operations or
transactions in a given time interval.

• Availability. Availability is defined as the
probability that the server is up and running.
Availability varies between 0 and 1. When it is
closer to 1, the server is considered to be highly
available, a feature always necessary.

• Accessibility. Accessibility refers to server’s ability
of serving a Web Service request. Accessibility is
different from availability, as a service maybe
available, i.e. the server is up, but can not handle
any incoming requests, thus not being accessible.

• Accuracy. This QoS parameter refers to the
accuracy of results in a numerical manner. It
specifies the number of significant decimal digits of
results.

• Capacity. Capacity specifies the maximum number
of requests a server is able to handle
simultaneously.

• Cost. This QoS parameter represents the overall
cost that results from service usage.

• Configuration. The configuration of services is
related to the interface update procedure and/or the
adopted standards; and it provides information
about the regulations the service complies with. It
indicates whether the services can interact with
each other. Configuration is measured by the
following metrics: Stability that represents how
often the service interfaces are modified,
SupportedStandard that refers to the standards that
the service complies with, and Regulatory that
refers to the probability of the fact that the service
is compliant with a random regulation.

• Integrity. It represents the ability of a WS to
preserve data integrity during a transaction. In
order to accomplish data integrity, all the
transactions that implement a specified function are
handled as a single unit. In case the transaction is
completed successfully all changes in data are
committed, while if the transaction is not
completed, all changes are rolled back. Integrity of
data is a boolean QoS parameter that is either
supported by the service or not.

• Reliability. This QoS parameter represents the
possibility of a WS session to get completed
successfully. Reliability is closely related to
availability, as the more available a server is, the
more reliable its services are. The parameters that
measure reliability are: MTTR (Mean Time To
Repair) and MTBF (Mean Time Between Failures).

• Security. This category of QoS parameters refers to
the security level a service provides. Security is of
great importance in AmI environments, as the user
needs to be in control, while the cognitive
saturation of the user should be avoided and user
privacy should be protected. The security

subclasses defined are: Confidentiality,
Auditability, Authentication, Authorization,
DataEncryption and NonRepudiation.
The main classes of this QoS ontology vocabulary

are depicted in Figure 2

Figure 2. The QoS ontology vocabulary.

It should be mentioned that the maximum height of
the defined QoS taxonomy tree is two. This is
preferable for the development of a QoS managements
system demonstrating reduced complexity.

Both the QoS ontology language and vocabulary
have been implemented in OWL using the Protégé [15]
ontology editor. The specified QoS vocabulary and
language are used in the Amigo Interoperable
Middleware in order to represent the QoS of the
interacting services. These ontologies form the basis of
the QoS profiles defined for the WSs delivered to the
Amigo users. OWL-S6 has been used to integrate them
with existing WSs in order for the latter to become
QoS-aware. The parameters of these ontologies are
managed via a module involved in QoS-aware service
management in Amigo. A reasoning mechanism is
necessary to ensure consistency of the different service
instantiations and the various vocabularies used by the
parties involved. Several technologies are currently
being examined as ontology reasoners and inference
engines candidates. Among these, the most likely to be
used is the Jena 2 semantic web framework7 with an

6 http://www.daml.org/services/owl-s/1.1/
7 http://jena.sourceforge.net/

external plugged-in reasoner (probably Racer8). Our
QoS ontology’s instances should be discoverable. In
order to support this, various discovery protocols will
be used, such as the WS-Discovery9, the UPnP10 and
the RMI11. In March 2006, a prototype implementation
of the Amigo Ambient Intelligence home platform will
be finalized based on the OSGi framework12.

5. A QoS Ontology Instantiation Use Case

In order to illustrate the functionality and usefulness
of the ontologies developed, an instantiation of the
designed QoS ontology is provided in this section. The
use case selected concerns WS provision in the
ambient intelligence home domain. In this respect, the
QoS ontology instantiation is built for the following
scene [16]:

“Maria is an elder person who needs to have
frequent contact with her doctor. Using its
telemedicine set box, Maria can have these contacts
periodically, previously scheduled or at any moment,
when she feels the need for such professional attention.
The contact between the doctor/nurse and Maria is
facilitated though a telematic media so that to provide
a Virtual Person-to-Person interaction, permitting the
exchange of images, sound and data (virtual presence).
Maria can be alone at home or assisted by relatives or
care givers. The doctor who provides the medical
attention may work in a hospital/health care centre or
may provide his/her professional service from home or
a private consultation.”

The main service in the scene described above is the
“MultimediaTelemedicine” service. Key elements are
the database holding Maria’s medical history, the
videoconference session support, and the biomedical
data acquisition and transmission functionality. The
system supports various measurements ad-hoc
transmission, e.g. ECG (electrocardiogram), chest
sound, blood pressure, temperature. Additionally,
traditional medical devices coupled with biosensors
attached to the patient’s body are established. They are
used to detect medical emergency situations. In such
cases the system automatically contacts a doctor, while
no action is required from Maria.

 The MultimediaTelemedicine service involves a
plethora of QoS parameters and requirements that
should be addressed in order to ensure an effective and

8http://www.racer-
systems.com/products/racerpro/index.phtml
9http://msdn.microsoft.com/library/en-
us/dnglobspec/html/ws-discovery1004.pdf
10 http://www.upnp.org/
11 http://java.sun.com/docs/books/tutorial/rmi/
12 http://www.osgi.org/

reliable communication between both participants
(doctor-patient). The most critical QoS parameters in
this scene are those related to network performance, as
real-time video communication is involved. Thus, high
Throughput should be guaranteed, while Jitter,
ResponseTime, Latency and ErrorRate should be
minimal. Indicative values for these parameters are
given in Table 1. Moreover, the
MultimediaTelemedicine service should be Accessible
and Available as long as possible, addressing the user’s
need for immediate contact with medical stuff in any
case of emergency. Scalability is also important in this
WS as the server should be capable of providing
additional resources whenever required, while its
Capacity should lie above a specific threshold. The
Cost QoS parameter of this service expresses how
much the service provider charges the user and what
charging scheme it uses (e.g. fixed cost per contact).
Another essential parameter is SupportedStandard that
indicates the various standards supported by the service
and can be used to identify possible incompatibilities
among the service requirements and the client features.
Finally, high Reliability should also be ensured.
Finally, security parameters should be considered in
this analysis, as we are dealing with sensitive personal
medical information that should not be disclosed to any
party apart from the authorised medical stuff.

Based on this analysis, we may now instantiate a
QoSParameter profile for the MultimediaTelemedicine
service, using the designed QoS ontologies.

Table 1. MultimediaTelemedicine
QoSParameters.

Accessibility 0.99000
Availability 0.99995
Performance
 (max) Jitter 1 (msec)
 (max) ErrorRate 10-5

(max) Latency 300 (msec)
(min) Throughput 384 (Kbps)
(max) ResponseTime 0.01 (sec)

Cost 3.00 (Euro/minute)
Capacity 200
Scalabillity 0.80
Configuration
 SupportedStandards “UDDI 3.0”

SupportedStandards “WSDL 1.1”
Reliability
 MTBF 36,000,000 (sec)
 MTTR 1,800 (sec)
Security
 Audiability 1
 Authentication “Password”
 Authorization “SSL”
 Confidentiality 1

 DataEncryption “AES-128”
NonRepudiation 1

 Notice that only the type, value and units of the
QoS parameters are provided above. The following
code snippet is a part of the ontology description of the
Throughput QoS parameter in OWL based on the
language presented.

6. Conclusions and Future Plans

It is a fact that integrating QoS featured profiles in
Web Service provision may benefit both users and
providers. It enables QoS-aware WS selection and
composition, thus addressing the quality based user
requirements with regards to properties such as
integrity, performance, security, cost and accuracy.
Furthermore, high QoS for a WS can be advertised in
its QoS profile in order to attract more customers,
which brings a considerable competitive advantage to
WS providers. Nevertheless, before these parties can
enjoy the advantages of QoS-aware WSs, a uniform,
highly descriptive and generic solution for the
representation of the plethora of the involved QoS
parameters needs to be designed and developed.

This paper presents a QoS semantic framework that
is suitable for Web Service provision and aims to
combine the advantages of existing QoS representation
schemes. On the one hand, it is concerned with the
creation of a QoS ontology language that is used to
formally describe arbitrary QoS parameters in a
flexible and machine-interpretable manner. On the

other hand, it presents the QoS ontology vocabulary
established, where the various QoS concepts involved
in WS provision are identified. In March 2006, a
prototype implementation of the Amigo Ambient
Intelligence home platform will be finalized. It will be
based on the presented QoS ontologies and will be
validated over a blend of heterogeneous technologies
encompassing multi-role domains. Various evaluation
criteria will be used with regards to performance,
scalability, interoperability, usefulness and
marketability. This work is expected to further
contribute to the integration of WSs in Ambient
Intelligence systems, while it will hopefully make a
step towards the introduction of Web Services in the
wide market.

Future plans aim to exploit the QoS semantic
framework presented focusing on two research areas.
The first will address the establishment of matching
algorithms that, based on the QoS ontologies
introduced, will support dynamic WS selection and
composition considering the user QoS preferences and
former behavior in the system. The second field
concerns the design of a QoS based negotiation
framework that will use mobile intelligent agents
responsible for preparing bids for and evaluate QoS
featured offers on behalf of the parties they represent
(i.e. WS providers and WS users). The agents will act
based on specific negotiation strategies aiming to
obtain the maximum benefit for their owners. These
tasks in the research areas above, intend to contribute
to the realization of a solid integrated QoS middleware
for the deployment of robust and scalable QoS-aware
Web Services.

7. References

[1] H.M. Deitel, P.J. Deitel, B. Du Waldt, and L. K. Trees,
“Web Services: A Technical Introduction”, Publisher:
Prentice Hall PTR, August 2002.
[2] D. Tidwell, “Web services: the Web's next revolution”,
IBM DeveloperWorks, November 2000 (Available via
www.ibm.com, last visited September 2005).
[3] S. Graham, S. Simeonov, T. Boubez, G. Daniels, D.
Davis, Y. Nakamura, and R. Neyama, “Building Web
Services with Java: Making Sense of XML, SOAP, WSDL
and UDDI”, Publisher: Pearson Education, December 2001.
[4] D. Krafzig, K. Banke, and D. Slama, “Enterprise SOA:
Service – Oriented Architecture Best Practices (The Coad
Series)”, Publisher: Prentice Hall PTR, November 2004.
[5] E.M. Maximilien, and M.P. Singh, “A Framework and
Ontology for Dynamic Web Services Selection”, vol. 8, no.
5, September-October 2004, pp. 84-93.
[6] H. Ludwig, “Web Services QoS: External SLAs and
Internal Policies: Or, How Do We Deliver What We
Promise?”, 4th IEEE International Conference Web
Information Systems Engineering Workshops (WISEW'03),
December 2003.

[7] M. Govern, and S. Weagraff, “Web Services: Provider
Threat or Opportunity?”, White Paper, Convergys
Corporation, September 2003.
[8] A. Mani, and A. Nagarajan, “Understanding Quality of
Service for Web Services”, IBM developerWorks, January
2002 (Available via www.ibm.com, last visited September
2005).
[9] K. Lee, J. Jeon, W. Lee, S. Jeong, and S. Park, “QoS for
Web Services: Requirements and Possible Approaches”,
W3C Working Group Note, November 2003.
[10] V. Tosic, B. Esfandiari, B. Pagurek, and K. Patel, “On
Requirements for Ontologies in Management of Web
Services”, International Workshop on Web Services, E-
Business, and the Semantic Web, May 2002. (LNCS, vol.
2512, pp. 237-247)
[11] C. Zhou, L. Chia, and B. Lee, “DAML-QoS Ontology
for Web Services”, International Conference on Web
Services 2004 (ICWS04), San Diego, California, USA, July
2004.
[12] M. Tian, A. Gramm, T. Naumowicz, H. Ritter, and J.
Schiller, “A Concept for QoS Integration in Web Services”,
1st Web Services Quality Workshop (WQW 2003), Rome
Italy, December 2003.
[13] D. Bianchini, V. De Antonellis, and M. Melchiori, “QoS
in ontology-based service classification and discovery”, 3rd
International Workshop on Web Semantics (WebS 2004),
Saragossa, Spain, August 2004.
[14] H.M. Kim, A. Sengupta, and J. Evermann, “MOQ: Web
Services Ontologies for QOS and General Quality
Evaluations”, European Conference on Information Systems
(ECIS 2005), Regensburg, Germany, May 2005.
[15] J.H. Gennari, M.A. Musen, R.W. Fergerson, W.E.
Grosso, M. Crubézy, H. Eriksson, N.F. Noy, and S.W. Tu,
“The evolution of Protégé: an environment for knowledge-
based systems development”, International. Journal of
Human-Computer Studies, vol. 58, no. 1, January 2003, pp.
89-123.
[16] M. Janse (editor), “Amigo-D1.2: Report on User
Requirements: State of the Art, Volume II”, Amigo
Integrated Project (IST-004182), April 2005.

