
FRACS-Ideas for implementation

everybody

November 10, 2014

Abstract

Some notes about what is need to improve in the code and how to
improve it. Anyone can add comments, corrections and notes on it.

1 What we want to implement [1]

1.1 Model grid

1. How to build the best grid in order to sample of high density (optical
depth)?

1.2 Image grid

1. An optimal grid for the image can also be adopted in order to better
follow the intensity distribution of the disc;

2. This can also help us to solve the problem of pixelized images in the
regions of low flux.

1.3 Models at high Optical Depths

In order to model young stellar objects it is necessary to become FRACS
compatiple with high opticla depths. Ideas:

1. To integrate the intensity contribution in the inverse direction (from the
image back to the disc). We can stop the integration when the optical
depth is too large and the intensity stops changing in a significantly
way; e and flux in the high density parts? Or is it not useful for us in
the case of the simplified radiative transfer from FRACS?

1

1.4 Velocity Fields

1. Including lines: we need to introduce a velocity field at each grid point,
following a parametrized description (for example: Keplerian rotation);

1.5 Spectral Lines

1. Gilles’s idea: to use a simplified description oflines seems very nice and
better agrees with the FRACS philosophy. For example in [2], line is
treated as a Gaussian profile at the visible disc surface, without any
radiative transfer.

2. We can do something better, but, considering a given line profile at
each grid point across the ray.

3. We should also check that the approximation of no scattering is valid
(within a certain precision) for lines.

1.6 Other continuum opacities

1. Should we add also other continuum opacities to the model, like (free-
free, bound-free)? It could be performed analytically, without to much
difficulty if we impose the temperature and density profiles

2 Priorities on code implementation [3]

He already developped the linear interpolation of the log in each cells. How-
ever, if we want to avoid storing 2 times the values of kappa at cell vertices,
we might want to use some implementation as described in [4] and [5].

Also, in [6] they use another way to interpolate the source function within
each cells (but they can identify the neighbors easily since their mesh is
regular).

It is important to identify the cells having an intersection with the phys-
ical boundary (specified by the user). In those cells, the integration must
start/stop from the physical boundary. Otherwise, some structures (more or
less the corners of the tori) appear in the images when the optical depth gets
high.

We must integrate from the outer boundary into the medium. By doing
so, we cannot longer used up/down ”symmetries” specific to a disk config-
uration but we expect that the gain in computing time will be important.
The criterion to stop the integration might be

2

1. stop when there is no further evolution of the specific intensity while
integrating,

2. when the optical depth reaches a certain prescribed value.

He thinks that this must be more or less the same, but we must check
this out.

It is not clear if the mesh refinment on the optical depth is a good idea.
Mainly because since the optical depth depends on the frequency, ideally we
should have a mesh for each frequency ... Otherwise, for frequency where
the medium is optically thin we will loose a lot of computing by using too
fine a mesh (scaled according to the most critical frequency where tau is the
largest).

We also mentionned that it would be cool to make the code deals also
with 3D configurations and let the user choose the geometry and mesh he
wants. He coded that in ’tapas’ (his Monte Carlo radiative transfer code)
and we can pick it from there.

We might need to develop an adaptive mesh in the image plain itself
using a quadtree as well. To do so, we can generate a prescribed number of
points uniformly distributed on the projection of cell centers (ellipses) onto
the image plane. Parallelizing this is not necessarily easy (if we want to)
because of the tree data structures (load balacing is not that obvious) but
there are some standard algorithms to do just that.

If we want priorities, he suggests :

1. Boundary fitting (to get rid of the nasty features in the images).

2. Integration from outside into the medium

3. Look carefully at the integration in each cells (interpolation, locating
neighbors, ...).

4. Adaptive mesh in the image plane.

5. Arbitrary geometry and mesh.

Points 1 and 2 are relatively easy, point 3 is more critical especially for
line transfer, he thinks.

3 First implementation – image.cpp

In order to eliminate the nasty features, visible in Figure 1, we started our
implementation by changing some aspects in image.cpp routine, mainly in

3

Figure 1: Image with nasty features that we want to get rid of

the way of interpolate. The actual version of the code treats the coordinate
system following the description described in [7], which one of those figures
we reproduce in Figure 2.

From Figure 2 we define rs(X, Y, i) as the position vector along a ray,
given in the model system of coordinates by:

rs(X, Y, i) =

 −X
−Y cos(i) + ssin(i)
Y sin(i) + scos(i)

 (1)

And, in the code, it is defined as:

4

Figure 2: Coordinate systems. The shaded ellipse represents a disc viewed by
the observer [7]

5

Listing 1: image.cpp - Setting coordinates

y=(iy+.5)*deltaY -halfSize;

double yOld=y;

// Rotation

y=cosTheta*yOld;

z=-sinTheta*yOld;

As a remember, in the code we’re dealing with the ray direction from
the center image to the outside (sign of coordinate). Our idea is to do the
opposite: ray comming from outside going to inside.

In [7], for the calculation of s, we have:

~rs
2 = R2

out (2)

X2 + (−Y cos(i) + s sin(i))2 + (Y sin(i) + s cos(i))2 = R2
out

s =
√
R2
out − (X2 + Y 2)

In the same article, the authors define the optical depth as:

τλ(X, Y, i; s) =

∫ √R2
out−R2

s

κextλ (r′s)ds
′ (3)

and Intesity as:

Iλ(X, Y, i) =

∫ √R2
out−R2

−
√
R2
out−R2

κabsλ (rs)Bλ[T (rs)]e
−τλ(X,Y,i;s)ds (4)

both of them in a analitically way.
In the numerical case we have to re-write intensity as:

∆Iλ =

∫ si+∆s

si

κabsλ (s)Bλ[T (s)]e−τλ(s)ds (5)

6

Figure 3: Coordinate systems in mesh.cpp [7, 4]

From linear interpolation and following the 3, we have:

dmax − dmin
∆z

= (z0 − zmin) + dmin (6)

where,

dmax =
d11 − d01

∆ρ
(ρ− ρmin) + d01 (7)

dmin =
d10 − d00

∆ρ
(ρ− ρmin) + d00

Substitute Eq(7) in Eq (6), we find the coordinates of each vertices of the
cell. In FRACS, such definition is made at mesh.cpp:

7

Listing 2: mesh.cpp - Setting coordinates

double rMax=position (0)+halfSize;

double rMin=position (0)-halfSize;

double zMax=position (1)+halfSize;

double zMin=position (1)-halfSize;

double rMax2=rMax*rMax;

double rMin2=rMin*rMin;

double zMax2=zMax*zMax;

double zMin2=zMin*zMin;

double d00=holder ->getDensity(rMin2 ,zMin2);

double d01=holder ->getDensity(rMin2 ,zMax2);

double d10=holder ->getDensity(rMax2 ,zMin2);

double d11=holder ->getDensity(rMax2 ,zMax2);

weights.resize (4);

if(d00 !=0. && d01 !=0. && d10 !=0. && d11 !=0) {

weights (3)=(d00+d11 -d10 -d01)/(size*size);

weights (2)=(d10 -d00)/size;

weights (1)=(d01 -d00)/size;

weights (0)=d00;

} else weights =0.;

}

In [6], the authors have a different way of rewriting Eq(3):

τν(s) =

∫ s

0

κextν (r0 + s′~n)ds′ (8)

Numerically, it means:

∆τν(s) =

∫ si+∆s

si

κextν (s)ds (9)

where in [6], they assume κextν ≈ A + B(s − si). In this sense, we can
rewrite the Eq(9) as:

∆τν(s) =

∫ si+∆s

si

(A+B(s− si))ds = A∆s+B
∆2s

2
(10)

8

In the same way, the Intensity is written as:

∆Iν =

∫ si+∆s

si

κextν (s)Sν(s)e
−τν(s)ds (11)

where, the Source function is written as CeDs . So, we have:

∆Iν = C

∫ si+∆s

si

[A+B(s− si)]eD(s−si)e−τν(s)ds (12)

Assuming (s− si) = l, we can rewrite as:

∆Iν = C

∫ ∆l

0

[A+B(l)]eDl−Al+B
l2

2 dl (13)

Problems here: time consuming evaluating log function→ quadratic func-
tion must be evaluated by Gamma Function. Also we have to check Taylor
expansion ...

4 Line Emissivity Problem [3]

The problem with line emissivity is that it is proportionnal to the line profile
and that it is very sharp.

This line profile is the result of three contributions :

1. A Lorentzian profile that is the ”natural” line width : the energy level
has a certain lifetime, and the line a related width in energy/frequency
via Heisenberg inequality. Classically, if we considered an electron
linked to the nucleus with a damped (because the e radiates) harmonic
oscillator excited by a plane wave, we also do get the Lorentzian.

2. The doppler shift due to the random motion of particles in the gas and
the microturbulence → This gives us a Gaussian profile.

In fact, the actual profile is the convolution of both profile. In practice,
the Lorentzian is much sharper than the Gaussian and we can assume a
Gaussian profile for the line.

If Φν is the line profile, because of the (macroscopic) velocity, the line is
centered on νij(1 + v.n/c), where νij is the frequency of the line. Because

9

of the Doppler shift, the frequency dependence is transform in a spatial
dependence of line emissivity.

If we assume that v varies linearly within a cell we can identify where we
have the line profile maximum in the portion of the considered ray crossing
the cell. We just need to add integration points there. Otherwise, we could
completly miss the line.

We need a faster way to generate the grid based on the gradient of some
quantities (estimated from finite differences) and generates the mesh in a
faster way based on the gradient of some quantities.

All those considerations described above were based on [8]. In that paper,
the authors made notes on molecular line transfer (See Section 2 in this
paper), where starting by the radiative transfer equation:

dIν
ds

= −ανIν + jν (14)

where Iν is the intensity of radiation, s is the length along the ray. Also,
in [8], we have a set of balance equations for level populations:

nu

[∑
l<u

Aul +
∑
l 6=u

(BulJ̄ul + Cul)

]
=
∑
l>u

nlAlu +
∑
l 6=u

nl(BluJ̄ul + Clu)(15)

where nu and nl are level populations and Aul and Bul are the Einstein
coefficients. Cul are coefficients of collisional excitation and ul indices spec-
ifies the transition from the upper level (u) to lower level l. Equations (14)
and (15) are coupled by the emission and absorption coefficients jν and αν :

jν =
hνul
4π

nuAulΦul(ν) (16)

αν =
hνul
4π

(nlBlu − nuBul)Φul(ν) (17)

And also by the mean intensity (J̄ul), defined as:

10

J̄ul =
1

4π

∫
4π

dΩ

∞∫
0

IνΦul(ν)dν (18)

where Φul(ν) is the line profile function and Ω is the spatial angle. The
line profile function can be expressed as:

Φul(ν) =
c

bνul
√
π
exp

{
−c

2[ν − νul − (v · n)νul/c]

2

}
(19)

in the approximation of total redistribution over frequencies and a Maxwellian
turbulent velocity distribution. Here νul is the central frequency of the tran-
sition u→ l, v is the regular velocity, n is the unit vector associated with dΩ,
and b is a parameter related to the kinetic temperature Tkin and the most
probable value of the microturbulent velocity Vturb by the expression:

b2 =

√
2kTkin
mmol

+ V 2
turb (20)

The intensity Iν can be expressed in units of the brightness temperature,
TB by means of the Planck Equation:

Iν =
2hν3

c2

1

e
hν
kTB − 1

(21)

Also, we can use the definitions mentioned in [9], where the Source func-
tion (Eq(11)) is defined as:

Sν =
jcν(R, θ) + jlν(R, θ, v̄)

αcν(R, θ) + αlν(R, θ, v̄)
(22)

which ray element is described in Figure 4.
In our case, we can re-write Eq(22) as:

Sν =
κabsν Bν + jν(R, θ, v̄)

κextν

(23)

where our jν(R, θ, v̄) will be dependent of Φul(ν) (Eq(19)).

11

Figure 4: Sketch of the RADlite ray element subsampling scheme. The illus-
tration shows the line and continuum source Sν, as function of radial velocity
(v(s)), which in turn is a function of location s along the ray. Normally, the
integral of the transfer equation is only evaluated at each end of the ray ele-
mentm as indicated in the figure, However, lines with narrow local broadening
may be completely missed by integration. In such cases, the line is localized
within the ray element and the integrand evaluated in a sufficient number of
points across the line[9]

12

References

[1] Armando’s e-mail.

[2] Domiciano et al, A resolved, au-scale gas disk around the B[e]
star HD 50138, http://arxiv.org/abs/1409.7394

[3] Gilles’ e-mail.

[4] Frisken, S.; Perry, R., Simple and Efficient Traversal Methods for
Quadtrees and Octrees, TR2002-41, 2002.

[5] Samet, H., Implementing Ray Tracing with octrees and neighbor
funding, 1989.

[6] Woitke, P. et al, Radiation thermo-chemical models of protoplan-
etary disks, A&A 501, 383–406 (2009)

[7] Nicollini, G., Bendjoya, P., Domiciano, A., Fast ray-tracing al-
gorithm for circumstellar structures (FRACS) I. Algorithm
description and parameter-space study for mid-IR interfer-
ometry of B[e] stars, Astronomy and Astrophysics (2010) 00,
http://arxiv.org/abs/1009.5616

[8] Pavlyuchenkov, Ya. et al, Molecular emission line formation in
prestellar cores, ApJ, 689:335-350, 2008

[9] Pontoppidan, K. M. et al, A New Raytracer for Modeling AU-
Scale Imaging of lines from Protoplanetary Disks, ApJ, 704:1482-
1494, 2009

13

