Implementação de Kernel Customizado Aplicado à Análise de Sentimentos em Resenhas de Filmes

Luciana Kayo e Paulo Mei

Prof. Dr. Marco Dimas Gubitoso

Introdução

- □Inspiração na competição "When Bag of Words Meets Bags of Popcorn" do Kaggle
 - ☐ Competição inciada em outubro de 2014
 - ☐ Análise de sentimentos em resenhas de filmes
 - ☐ Uso da ferramenta Word2Vec do Google, que busca significado semântico em textos
 - ☐ Base de dados do IMDb

Proposta

☐ Fazer análise de sentimentos nas resenhas dos filmes utilizando **SVM** (Support Vector Machine) ☐ Conjunto de dados é o mesmo disponibilizado para a competição do Kaggle ☐ Objetivo é comparar kernels diferentes quanto a acurácia em determinar uma resenha em positiva ou negativa ☐ Kernel linear vs. Kernel customizado ☐ Estudo de formas melhores de tratamento de dados para obter resultados mais significativos

Conceitos

□Tf-idf

☐ Mineração de dados (Data mining)
 ☐ Análise de sentimentos
 ☐ Aprendizado supervisionado
 ☐ SVM
 ☐ Função de kernel
 ☐ Bag of Words

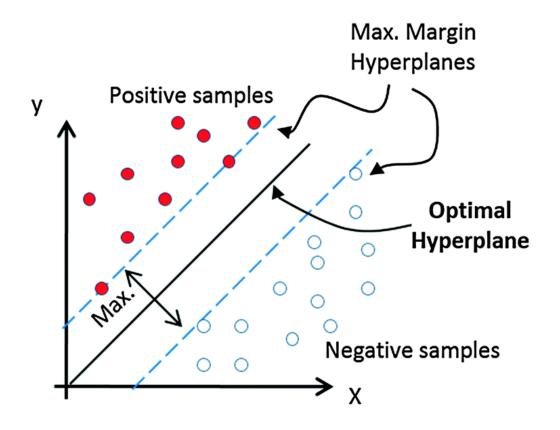
Mineração de Dados

- □Análise de um grande conjunto de dados em busca de padrões e conhecimento
- □ Foco em extrair informações do conjunto e transformá-las em estruturas que podem ser melhor entendidas e usadas posteriormente
- ☐ Mescla aprendizagem de máquina (*Machine Learning*), inteligência artificial e estatística
- □ Aplicação em diversas áreas, como medicina e ciência, jogos, vigilância, finanças e negócios etc

Análise de Sentimentos

- □ Campo da mineração de dados
- ☐ Sinônimo de mineração de opinião
 - ☐ Uso de processamento de linguagem natural e análise de textos
 - ☐ Objetivo é identificar e extrair informações subjetivas em textos
 - ☐ Tentativa de entender o sentimento do autor no momento da escrita, determinando a polaridade do texto: positiva ou negativa

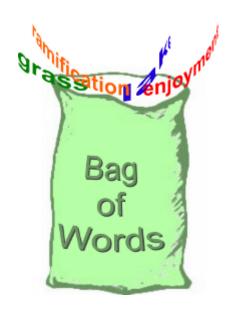
Aprendizado Supervisionado


- ☐ Subcampo de aprendizagem de máquina
- ☐ Busca analisar um conjunto de dados de treino rotulados para encontrar uma função
- □ Dados consistem de uma informação de entrada e um resultado esperado (rótulo)
- □Função encontrada deve ser capaz de mapear novos dados não rotulados

SVM

☐ Modelo de aprendizado supervisionado □Algoritmo que busca padrões em dados para classificação e análise de regressão □Analisa um conjunto de dados de treino rotulados e cria um modelo para definir se um novo dado pertence a uma categoria ou a outra ☐ Basicamente cria um hiperplano que separa o conjunto em duas classificações

 \square Baseia-se em uma função de *kernel*, que tenta, de modo geral,


computar um produto interno a partir dos dados analisados

Exemplo de definição de hiperplano pelo SVM

Bag of Words

- ☐ Modelo utilizado em processamento de linguagem natural
- ☐ Texto é representado em um saco de palavras
- ☐ Considera a multiplicidade das palavras, desconsiderando gramática ou a ordem em que ocorrem
- ☐ Técnica usada na classificação de textos baseadas na frequência de palavras como vetor de características

Tf-idf

□ Do inglês, Term frequency-inverse document frequency
 □ Cálculo da frequência de um termo (palavra) levando em conta tanto a frequência num único texto quanto no conjunto de textos
 □ Termo que aparece muitas vezes num texto ganha um peso alto, pois é importante
 □ Termo que aparece em muitos textos no conjunto ganha um peso baixo, pois não é bom para ajudar a separar as amostras

☐ Peso final do termo depende dos dois fatores

Implementação

- ☐ Fases:
 - ☐ Definição do conjunto de dados a serem estudados
 - ☐ Definição da linguagem e ferramentas a serem usadas
 - ☐ Pré-processamento (limpeza) dos dados
 - ☐ Uso do SVM com dois *kernels* diferentes
 - ☐ Análise dos resultados obtidos
 - ☐ Conclusão com base no desempenho de ambos os *kernels*

Conjunto de Dados

- □ Dados são resenhas do IMDb, previamente organizados para a necessidade da competição do Kaggle
- □Cada dado é uma linha de um arquivo contendo:
 - ☐ Identificador
 - \square Rótulo binário: 1 para positivo (nota >= 7) e 0 para negativo (nota < 5)
 - ☐ Texto da resenha, em inglês
- ☐ Conjunto inicial de 25 mil dados rotulados

Linguagem e Ferramentas

ШL	inguagem Python:
	☐ Linguagem de alto nível
	☐ Geralmente utilizada para mineração de dados e SVM
	□ Possui várias ferramentas que podem ser acopladas aos programas e diversas bibliotecas com funções pré-definidas para uso de SVM
	☐ Pandas para manipulação de dados, análise e uso de estruturas como data frame
	□ NLTK para processamento de linguagem natural, classificação, tagging e tokenização de palavras
	☐ Scikit-Learn, baseado em NumPy, SciPy e matplotlib, para processamento dos dados e classificação com algoritmos como SVM

Pré-processamento dos dados

□Р	assos principais:
	☐ Remover tags HTML
	☐ Remover <i>stop-words</i> : termos como "the", "is" etc
ПΑ	Iternativas para melhorar o resultado dos algoritmos:
	□ POS-Tagging (Part-of-Speech Tagging): classificar termos de uma frase segundo o tipo de palavra: adjetivo, substantivo, advérbio, verbo etc
	☐ Separar apenas adjetivos, uma vez que tem peso em definir algo como positivo e negativo

SVM

- □ Dados limpos foram submetidos ao aprendizado pelo SVM
- □60% da amostra rotulada separada para treino
- □40% restante da amostra para testes
- ☐ Aplicação dos dois kernels com o SVM
 - □Cálculo do *score-in* e *score-out*, porcentagem de acerto dentro da amostra de treino e fora dela, respectivamente, para comparação dos *kernels*

SVM com *Kernel Linear*

- □ Kernel linear basicamente define uma função linear para a classificação
- ☐ Uso do SVM do Scikit-Learn
- □ Dados foram submetidos ao Bag of Words e depois ao Tf-idf
- □Foco na frequência de adjetivos e advérbios no texto, independente da ordem
- ☐ Permitiu trabalhar com amostra maior
- □ Bom resultado de acertos

Idéia do Kernel Customizado

- □Surgiu em uma conversa com o professor Gubi
- □ Ele sugeriu um esboço de *kernel* que levasse em conta a ordenação de palavras e as sequências delas que poderiam se repetir em mais de uma resenha
- □ A idéia era dar peso maior às palavras que aparecessem na mesma ordem em diferentes resenhas, fazendo algo próximo de um *cluster* em torno das mais significativas

		Film e	muit 0	engr açad o	diver tido	
	Foi	0	0	0	0	
	muit o	0	8	8	0	
	engr açad o	0	8	10	8	
	diver tido	0	0	8	8	
Esbo	ço do surpr eend	que	seria	0 kern	nel COI	m um <i>cluster</i>

ente

Gap-weighted subsequence kernel

- □ Durante as pesquisas sobre *string kernels*, foi encontrado um algoritmo parecido com o sugerido pelo professor Gubi
- □ String kernel apresentado no livro Kernel Methods for Pattern Analysis e no paper Text Classification Using String Kernels
- □ Idéia é procurar por substrings comuns nos textos, porém dando margem a um espaçamento entre as letras, ou seja, a nem todas as letras da sequência precisam estar uma imediatamente após a outra
- □ Porém se as letras da substring estiverem na sequência buscada, a substring recebe um peso maior

		c- a	c- t	a- t	b- a	b- t	c- r	a- r	b- r
	f(c at)	la m b d a ²	la m b d a ³	la m b d a ²	0	0	0	0	0
	f(c ar)	la m b d a ²	0	0	0	0	la m b d a ³	la m b d a ²	0
xen	at)	amb	da é	um m b d a ²	valo b d a²	r en b d a³	tre C	e ⁰ 1	0
do pa	f(b ar	0	0	0	la m b	0	0	la m b	la m b

Solução

- □ Adaptar o algoritmo já existente
- ☐ Substituir as comparações com substrings com comparações por palavras seguidas no texto
- ☐ Levar em conta a ordem das palavras
- ☐ Levar em conta a distância entre palavras

SVM Count Bag of Words						
	Sem stop- words	Só adjetiv os	Adjetiv os + Advérb ios			
Score- * Amost	0.9963 ra de 25 r	0.8403 nil	0.8996			
Score- out	0.8284	0.7955	0.8205			

SVM Tf-idf Bag of Words						
	Sem stop- words	Só adjetiv os	Adjetiv os + Advérb ios			
Score- * Amost	0.9394 ra de 25 r	0.8359 nil	0.8815			
Score- out	0.8732	0.7981	0.8377			

SVM com <i>kernel</i> customizado				
	Adjetivos + Advérbios			
Score-in * Amostra de 1 mi	0.9967			
Score-out	0.5275			

Tempo de execução						
	Sem stop- words	Só adjetiv os	Adjetiv os + Advérb ios			
Limpe za	17m 20.79s	10h 00m 35.22s	10h 01m 03.41s			
SVM Count	22m 26.75s	07m 49.56s	14m 33.00s			
SVM <i>Tf-idf</i>	23m 06.03s	05m 35.15s	09m 38.79s			

Conclusões

- □ Filtragem por adjetivos melhora o desempenho, em relação ao uso de todo tipo de palavra, reduzindo o vetor de características, porém a um custo alto de pré-processamento
 □ Filtrar por adjetivo e advérbio melhora um pouco mais os resultados, porém demora ainda mais tempo para o préprocessamento
 - processamento de tempo de execução

□ Kernel customizado tem execução muito custosa em termos de

- ☐ Hipótese de que o tempo e o desempenho melhorariam com o uso apens de adjetivos e advérbios
- 🗆 Mesmo com a redução, o custo computacional é muito alto para um

Fim!

Obrigado!