
Institute of Mathematics and Statistics
University of São Paulo

Code Quality in Agile Methods:
A Study on Group Development

Felipe Túlio Pereira da Cruz
Advisor: Alfredo Goldman
Co-advisor: Lucas Gren

São Paulo, November 2015

Summary

1 Abstract 2

2 Introduction 3

3 Related Work 5
3.1 Agile Methods . 5
3.2 Extreme Programming . 6
3.3 Code Quality . 7
3.4 Group Development . 7
3.5 Integrated Model of Group Development 8
3.6 Group Development Questionnaire (GDQ) 9

4 Method 11
4.1 Participants . 11
4.2 Survey . 11
4.3 Procedure . 12
4.4 Data Analysis . 12

5 Results 15
5.1 Correlation of individual questions 15
5.2 Correlation between code quality and GDQ 4 sections . . . 18

6 Discussion 20
6.1 Correlation of individual questions 20
6.2 Correlation between code quality and GDQ 4 sections . . . 21

7 Conclusion 22

8 Acknowledgements 23

9 References 24

1 Abstract

Agile development process, popularized in the last decades, emerged
as an alternative to traditional methods, based on the ”waterfall” life cy-
cle, to ensure high software quality and faster development [1]. Since agile
methods are mainly focused on group work, their performance may not
always be the same [2]. Group development, a concept in the field of Psy-
chology, states that a group pass through phases across time, dividing
them in stages and relating some aspects to each one [3].

The agile methods assure better code quality [1], but is this related to
the stage a group is? This study investigates the relationship between de-
velopers perceptions of effectiveness and productivity and the quality of
the code that is produced by agile methods.

Data from students from the class of Laboratory of Extreme Program-
ming at the University of São Paulo was gathered for this study. To assure
Agile concepts, a total of 7 groups were made. Each individual answered
a survey containing questions about their own perceptions regarding how
efficient the group was and the quality of the code that were created. The
data was analyzed and Pearson’s correlation was used to measure the re-
lation between variables.

The findings show that code quality and group stage are not correlated.
However, it was possible to notice bonds between quality and some as-
pects of productivity.

2

2 Introduction

At the beginning of the millennium, a group of preeminent software de-
velopers produced the Manifesto for Agile Software Development, which
became known as Agile Manifesto [4], on which Agile Methods are based.
Since then, those methods, as Scrum or XP, have been attracting increas-
ingly developers for several reasons. Characteristics that draw attention for
the approach are the capacity to cope with project changes through cre-
ation [1], delivering the final product early than a plan-driven procedure [5] or
designing code with better quality [6]. Independent of the method adopted,
the concept of team is crucial, because cooperation and self-organization
are essential factors. However, groups go through stages, and groups per-
form differently in each stage [3]. Therefore, the quality of the application
developed should be influenced by the stage the team is.

Group Development is a field in Psychology that studies how groups
change over time. Since last century, a huge variety of models were pro-
posed to explain those transformations. McGrath divides the stages into
four modes, allowing groups to take their own path from the initial stage
to the final one [7]. Tuckman and Jensen created their model starting from
the review of about fifty studies, where a group trail a linear way (forming,
storming, norming, and performing) [8]. A last example is Fisher’s model,
separating stages by how groups take their decisions [9]. A peculiar fact
that most of the models has in common is that in certain stages a group
has a superior performance than in other stages.

On the other hand, Agile Methods arose as an alternative to the well-
established Waterfall Model. Mainly focused on the human factor, agile
development has been growing on the market due to its capability to sat-
isfy the software industry needs, delivering a superior, low-cost and faster
product [10]. Jim Highsmith defines being Agile as able to ”Deliver quickly.
Change quickly. Change often” [11]. Iterative production, focus on interac-
tion, intensive communication between team members and the reduction

3

of artifacts are characteristics that Agile techniques share, despite the fact
that each Agile approach has its own practices and priorities [10].

Having in mind that groups face the process of the changing stages
across time to reach a desirable outcome and Agile teams rely on commu-
nication to develop their ideas, a bond between the efficiency related to the
stage groups are and the quality of the software produced may exist.

It is possible to measure the productivity and performance of a group by
the method proposed by Wheelan [12][13]. When it comes to software pro-
duction, a few questions covering quality, maintenance and re-factoring
were proposed. A correlation between both variables is desirable. If they
are related, the code quality may vary with the stage the groups is. Other-
wise, it is imaginable that a team can keep the quality of the software, inde-
pendent of the stage it is. Also, correlations between individual questions
can expose relevant aspects from the code developed and how efficient a
group is.

In the next section, Related Work, we will review about the related lit-
erature, Group Development and Agile Methods. Right after, in Methods,
the approach applied in this research, including data collection and analy-
sis is described. The findings are shown in the Results section. Discussion
about the outcome comes after. In the last section, everything is wrapped
up and a Conclusion is made.

4

3 Related Work

3.1 Agile Methods

Because of the industry requirements and the advancement of the tech-
nology, traditional ways of developing software couldn’t take over all the
changes [10]. On a plan-driven methodology, extensive planning and sys-
tematized procedures are fundamental pillars; however, it may lead to pre-
dictable and/or repeatable actions [14]. To attend those demands, tech-
niques focused on continuous and incremental cycles began to stand out
[10].

In 2001, practitioners of those techniques gathered and proclaimed the
Manifesto for Agile Software Development [4], a collection of lightweight
methods in reply to the heavyweight plan-driven methods [15]. The mani-
festo states that Agile Development should rely on four core values:

• Individuals and interactions over processes and tools;

• Working software over comprehensive documentation;

• Customer collaboration over contract negotiation;

• Responding to change over following a plan.

These four items are the foundation of the Agile Methodology, defining
its values and distinguishing it from the traditional methods [10]. In contrast
to traditional approach, Agile methods are characterized by: collaboration,
inside the development group and outside of it; code reviews, granting the
diffusion of key information; small teams, requiring less effort to coordinate
the team; short iterations, turning changes in the project easier; timebox-
ing, improving productivity; and continuous testing, ensuring performance
[1].

5

3.2 Extreme Programming

One of the first emergent Agile Methods, Extreme Programming was
introduced by Kent Beck in 1999 and quickly adopted by developers. Beck
describes XP (Extreme Programming) as ”a style of software development
focusing on excellent application of programming techniques, clear com-
munication and teamwork” [16].

XP is identified as having 12 practices during the development process.
Practitioners recognize that each practice by itself does not strengthen the
methodology, but their combination does [10]. The twelve practices are de-
fined as follows [16]:

• Planning Game: in the beginning of each iteration, developers and
customers estimate and determine requirements for the next release;

• Small Releases: small versions of the systems released often that
assist in the acceptance process by the customer;

• Metaphor: customers and developers create stories that model the
system;

• Simple Design: keep the design as simple as possible;

• Tests: developers constantly write acceptance, unit and functional
tests, which must run impeccably;

• Refactoring: the process of restructuring the system maintaining its
behavior, reducing code complexity and improving readability;

• Pair Programming: two developers at the same machine write all
code;

• Continuous Integration: new features are integrated into the system
once it is developed and tested;

• Collective ownership: all developers own the code, and anyone can
make changes if necessary;

6

• On-site Customer: a customer is part of the team to answer ques-
tions;

• 40-hour Weeks: work with quality in a healthy pace;

• Coding Standards: all the code produced follows stipulated patterns.

3.3 Code Quality

Software quality is difficult to define, represent, comprehend and mea-
sure, even though it is crucial for a product success [17]. According to the
Institute of Electrical and Electronics Engineers (IEEE), quality is: ”The de-
gree to which a product or process meets established requirements; how-
ever, quality depends upon the degree to which those established require-
ments accurately represent stakeholder needs, wants and expectations”
[18].

As an attempt to maintain a satisfying quality, several methods are used
to improve code condition. Refactoring is a technique where small changes
are made to the code, turning its design better without changing its exter-
nal behavior. The reconstruction of the code is based on code checkup,
reducing error probability [19]. Another method is Software Maintenance,
which is the correction of defects and fixing faults to improve performance.

3.4 Group Development

A field of Psychology, entitled Group Development, investigates the be-
havior of small groups and how they change over time, the manner they
are formed, their work style and the moment of dismantle [20]. Aspects
analyzed include the quality of the output produced, its cohesiveness, ex-
istence of conflict and the frequency of activities. Patterns of change and
if there is continuity in their conduct are examined to generate models.

According to Bales, a definition of group is: ”A small group is defined as
any number of persons engaged in interaction with each other in a single

7

face-to-facemeeting or series of meetings, in which eachmember receives
some impressions or perception of each other member distinct enough so
that he can, either at the time or in later questioning, give some reaction to
each of the others as individual person.” [21].

Through time, in order to remain effective and keep their development
groups must perform crucial task: they should achieve their objectives,
keep a good environment between groupmembers and be capable to read-
just to unexpected situations [22].

3.5 Integrated Model of Group Development

The integrative model of small group development, presented byWhee-
lan, takes the perspective that a group achieves maturity as it members
keep working together [12]. This model associates distinct conducts and
standards of a group to a specific stage. A group’s life, although linear in a
sense, is divided into 4 stages, where it evolves over time passing through
them.

Figure 1: Group Development Stages

8

Stage 1 - Dependency and Inclusion: The first stage of this model is
represented by significant dependency on the nominated leader, preoc-
cupation about security and inclusion problems. In this stage, members
rely on the leader to give instructions and determine in which direction the
group should go [3].

Stage 2 - Counter Dependency and Fight: In this stage, conflict is
inevitable. Members disagree with themselves as they present different
point of views or express contradictory opinions. Nevertheless, to build
the group’s confidence and create an environment where members are
comfortable to discord, disagreement is fundamental [3].

Stage 3 - Trust and Structure: Conflicts continue to occur in this stage;
however, the groups is mature enough to manage its conflicts more effec-
tively. A boost of cohesion, confidence and tolerance arise due the positive
working relationships formed. Subgroup is encouraged and division of la-
bor takes place [3].

Stage 4 - Work and Productivity: The fourth and the last stage is char-
acterized by intense team work and efficiency. The group gets, gives and
uses feedbacks about its productivity and effectiveness. The group finally
is able to focus on goal achievement, since many issues of the preceding
stages where resolved [3].

3.6 Group Development Questionnaire (GDQ)

In order to measure a group’s stage in the Integrated Model of Group
Development, Wheelan designed the Group Development Questionnaire
[13]. The survey was divided into 4 sections, each section was arranged to
evaluate the amount of energy expended on a stage individually.

9

Test questions of each section were composed to recognize the ex-
istence or lack of behaviors from the stages of development. The items
on the first section measure how much energy is spent dealing with prob-
lems about reliance and involvement. The second section is related to how
intense is the group concentration on conflicts and counter dependency
problems. Questions from the third section seek to evaluate the degree
of trust and structure presented by the group. Aspects from stage 4 are
estimated by the last section [3]. Sample items can be found below:

Section Sample Items

GDQ 1 Members tend to go along with whatever the leader suggests

We haven’t discussed our goals very much

GDQ 2 Members challenge the leader’s idea

There is quite a bit of tension in this group at this time

GDQ 3 We can rely on each other. We work as a team.

The group spends its time planning how it will get its work done

GDQ 4 The group acts on its decisions

This group encourages high performance and quality work

Table 1: GDQ sample questions from each section

There are a total of 60 questions, 15 for each stage. Each item is rated
from 1 (never true for this group) to 5 (always true for this group). There-
fore, the minimum score for a section is 15, and the maximum is 75.

The fourth section evaluates work and productivity (GDQ 4) and has
been proven to correlate with a variety of effectiveness measures in differ-
ent sectors. For example, intensive care faculty saves more lives [23] and
high school staff leads to a better performance of their students [24] when
their GDQ 4 score is higher.

10

4 Method

4.1 Participants

The sample for this study was obtained in the class of Laboratory of
Extreme Programming at the Institute of Mathematics and Statistics, in the
University of São Paulo. The goal of Lab XP is to introduce the concept of
Agile Methods through Extreme Programming, by developing a software
project for a stakeholder.

Students voted for the most interesting proposals from a body of clients.
Afterwards, groups were formed depending on the personal choice of each
student, that were supposed to choose 3 proposals to work in. The class
contained 40 students that were divided into 7 groups. Group size varied
from 6 to 8 members, including a preselected coach, a student that already
had contact with Agile Methods before.

Each group were able to select in which programming language they
would develop and how frequent meetings would be; as long as they com-
ply with the norms established by the Extreme Programming method and
gather together for a minimum of 8 hours per week to develop as a group.

4.2 Survey

Every student received a survey to answer that were composed by the
15 questions of GDQ 4, to measure how productive and efficient groups
were, and 3 question concerning the quality of the code produced. The 18
questions from the survey were rated on a Likert scale from 1 (low agree-
ment to the statement) to 5 (high agreement to the statement). Next are
the three questions related to code quality.

11

How would you rate the code quality in your product(s)?

How often does the code need maintenance?

How much ”extra time” is given for cleaning up and re-factoring
the source code?

Table 2: Code Quality Questions

4.3 Procedure

The surveys were distributed to every participant during class time, after
a initial period of about a month. Groups varied in the amount of code
produced up that moment, some had a substantial quantity and some had
just restarted their work. They had a couple of days to fill it out. After the
deadline, the surveys were collected from the coach of each team. Every
survey was answered; however, a few were not complete.

4.4 Data Analysis

In order to verify if there is a link between how groups perceive their pro-
ductivity and efficiency with the quality of the code developed, Pearson’s
Correlation analysis was performed. Pearson’s Correlation measures the
strength of the association between two variables. Likewise, Pearson’s
Correlation was adopted to check the existence of a correlation between
each question from the GDQ 4 section with each question from the code
quality section.

However, a number of researchers have described complications as-
sociated with studying groups from a Social Science perspective. For that
reason, the Significance generated by Pearson’s Correlation will be inter-
preted differently [25]. Cohen analyzed the persistent neglect of statistical
analysis in behavior studies and designed new threshold values for stan-
dard statistical tests based on his ideas of effect-size [25].

12

Pearson’s Correlation , denoted by r, vary from -1 to 1, where positive
values denote positive linear correlation and negative values denote neg-
ative linear correlation. A value of 0 denotes no linear correlation. A table
with the standard interpretation of correlation and Cohen’s idea of effect-
size can be observed as follows.

Weak Moderate Strong

Traditional Interpretation 0.4 0.7 1

Cohen’s Idea of Effect Size [25] 0.1 0.3 0.5

The level of significance for two-tailed tests was set to 0.05. Still, the
size of the sample needs to be taken into consideration. Because of the
small sample, moderate correlations may misleadingly not reach signifi-
cance. Therefore, the value of correlations must be interpreted carefully.

Since questions 2 and 3 from the code quality section are negatively
worded, it is not possible to use the same scoring as positively worded
questions. Therefore, the reverse of their scores were used to produce the
results. In other words, to generate the correlations those questions had
their results reversed, i.e., rate 1 was designated 5; rate 2 was designated
4; and so forth.

AQuantile-Quantile plot of StandardizedResiduals (Q-Q plot) is a graph-
ical technique for determining if two data sets come from populations with
a common distribution by plotting their quantiles against each other. A Q-Q
plot was calculated with the purpose of evaluating whether the data was
normally distributed or not. It is possible to verify, in Figure 2, that the points
are close to the reference line, which indicates that the sample seems to
come from a normal population.

13

Figure 2: Q-Q plot of Standardized Residuals calculated from the regres-
sion model

The Shapiro-Wilk test checks whether a random sample comes from a
normally distributed population or not by the usage of the null hypothesis
principle. The null hypothesis asserts that the population is normally dis-
tributed. Thus if the null hypothesis is rejected, there is evidence that the
data tested are not from a normally distributed population. Otherwise, the
null hypothesis that the data came from a normally distributed population
cannot be rejected. From this test, it is possible to conclude that there is no
evidence to testify, with a 5% confidence level, that the sample from this
study was not retrieved from a normal population.

14

5 Results

5.1 Correlation of individual questions

The outcome obtained by Pearson’s Correlation between individual ques-
tions from GDQ 4 and each question from code quality (CQ) section and
the respective significance can be verified below:

Person’s Correlation CQ 1 CQ 2 rev. CQ 3 rev.

Significance (2-tailed) (N = 39) (N = 37) (N = 36)

GDQ4 1 0.059 0.094 -0.109

(N = 40) 0.719 0.578 0.523

GDQ4 2 0.291 0.347 0.045

(N = 40) 0.072 0.035 0.794

GDQ4 3 0.498 0.097 -0.076

(N = 40) 0.001 0.568 0.657

GDQ4 4 0.160 0.226 -0.254

(N = 40) 0.331 0.177 0.134

GDQ4 5 0.299 0.311 0.041

(N = 40) 0.064 0.061 0.0812

GDQ4 6 0.153 0.277 0.023

(N = 40) 0.353 0.097 0.892

GDQ4 7 0.331 0.234 -0.162

(N = 40) 0.039 0.163 0.345

GDQ4 8 0.488 0.318 -0.087

(N = 40) 0.001 0.055 0.615

15

Person’s Correlation CQ 1 CQ 2 rev. CQ 3 rev.

Significance (2-tailed) (N = 39) (N = 37) (N = 36)

GDQ4 9 0.226 0.257 -0.056

(N = 39) 0.172 0.130 0.751

GDQ4 10 0.264 0.225 0.167

(N = 40) 0.104 0.180 0.331

GDQ4 11 0.309 0.253 -0.290

(N = 40) 0.056 0.130 0.86

GDQ4 12 0.348 0.141 -0.319

(N = 39) 0.032 0.412 0.062

GDQ4 13 0.136 0.143 -0.327

(N = 40) 0.410 0.398 0.052

GDQ4 14 0.136 0.170 -0.224

(N = 39) 0.414 0.322 0.195

GDQ4 15 0.022 -0.119 -0.497

(N = 40) 0.896 0.482 0.002

Table 3: Correlation between individual questions

The results can be divided into three sections depending on the sig-
nificance (2-tailed) from each correlation. Significance values above from
0.06 until 0.1, results that can’t be characterized as not statistically sig-
nificant, because of the sample size. A range above 0.05 to 0.06 for the
significance values that have a rate close to the necessary acceptance.
Finally, the significance values from 0 to 0.05, the ones that have strong
evidence to reject null hypothesis.

16

From the first section, it is relevant to point out the following results:

• CQ 1 / GDQ4 2: Approximately moderate correlation stating that if
the group is accomplishing some of its goals, superior code quality is
expected;

• CQ 1 / GDQ4 5: Roughly moderate correlation asserting that the
better is the group decision making approach, the better is the code
quality;

• CQ 2 rev. / GDQ4 5: Moderate correlation affirming that the better is
the group decision making approach, the less code maintenance is
needed;

• CQ 2 rev. / GDQ4 6: Weak correlation affirming that the more par-
ticipatory decision making methods are, the less maintenance is de-
manded;

• CQ 3 rev. / GDQ4 11: Relatively moderate correlation stating that the
more attention given to details, the more refactoring is performed;

• CQ 3 rev. / GDQ4 12: Moderate correlation declaring that if the group
maintains good relationship with other groups, more refactoring is ob-
served.

Outcomes from the second section are listed below:

• CQ 1 / GDQ4 11: Moderate correlation stating that additional atten-
tion devoted to details, the better is the code quality;

• CQ 2 rev. / GDQ4 8: Moderate correlation affirming that if high per-
formance and quality work is encouraged, the less codemaintenance
is required;

17

• CQ 3 rev. / GDQ4 13: Moderate correlation asserting that if technical
and people resource are utilized, code refactoring is more present.

Finally, results from the last section are described as follows:

• CQ 1 / GDQ4 3: Practically strong correlation affirming that greater
use of feedbacks about the group effectiveness and productivity, high
quality code is predicted;

• CQ 1 / GDQ4 7: Moderate correlation stating that if the group acts
on its decisions, the code quality is better;

• CQ 1 / GDQ4 8: Relatively strong correlation asserting that the more
high performance and quality is encouraged by the group, code tends
to be of high quality as well;

• CQ 1 / GDQ4 12: Moderate correlation declaring that if the group has
good relationships with whom it interacts, code quality is expected to
be high;

• CQ 2 rev. / GDQ4 2: Moderate correlation asserting that if goals are
being accomplished, the less code maintenance is demanded;

• CQ 3 rev. / GDQ4 15: Basically strong correlation stating that if sub-
groups is encouraged, code refactoring is performed more often.

5.2 Correlation between code quality andGDQ4 sections

The observed value for the Pearson’s Correlation between both vari-
ables is 0.277, which represents a moderate positive linear correlation be-
tween them. The coefficient of determination (r2), acquired from the re-
gression analysis, had a result of 0.0767. This value indicates that, approx-
imately, 7.67% of variance in the code quality is explained by the GDQ4
measurements.

18

The Analysis of Variance (ANOVA) Test, a statistical method used to
test differences between two or more means, was ultimately performed.
This test indicates with a p-value of 0.0922, that the perception of produc-
tivity and efficiency and the quality of the code developed does not have a
significant difference.

19

6 Discussion

6.1 Correlation of individual questions

Outcomes from this study revealed significant relationships between
distinct variables. Furthermore, empirical evidence that was taken for granted
in the field of Computer Science, may start being supported.

With regard to developing code with high quality, it is strongly positive
correlated to some practices that groups perform. The code excellence
was proven to be better if the development group reinforce high perfor-
mance and quality. Moreover, the usage of feedbacks to notify the group
itself about how effective and productive they are also reflects positively on
the code developed. Other moderate correlations are taken in considera-
tion in this parameter. The accomplishment of goals, the decision making
proposal and dedication to details leads to a better code.

Considering the amount of maintenance demanded, moderate corre-
lations, but positive oriented, were discovered. The main observation is
the correlation that indicates the less need for maintenance thanks to goal
attainment. However, other results can’t be neglected, as the correlation
with participatory decision-making approaches and the encouragement of
high performance and quality.

Concerning code refactoring, a negatively strong correlation stands out
among the rest. If the division into subgroups is encouraged, refactoring is
more frequent. Nevertheless, the usage of technical and people support,
good relationship with other individuals or groups and excessive care spent
in details contributes to extra time refactoring code.

It is difficult to relate findings from this experiment to previous researches,
since the field of Agile Development is relatively new and the relation with
Psychology is being established gradually.

20

6.2 Correlation between code quality andGDQ4 sections

This outcome comes against the odds, since other researches based on
the measurement of work and productivity correlating it with a diversity of
effectivenessmeasures in various sectors indicated positive correlations[23][24].

Nonetheless, this finding still is valuable. The information that code
quality developed by a group adopting Extreme Programming, an Agile
Method, is not related to how much the group perceive their efficiency and
productivity, the GDQ 4 measurement, brings another perspective to the
software development scenario. It implies that quality of the code produced
doesn’t depend on the group’s efficiency and productivity, i.e, a group that
doesn’t consider itself efficient and productive may develop a high quality
code, and vice-versa.

The impact of this result suggest not to focus on the development of the
group to produce better code. Instead of spending time and energy in a
variable that will not influence in a superior outcome, other aspects should
deserve more attention, as the ones mentioned previously.

21

7 Conclusion

This research shows a correlation between the quality of the code de-
veloped by groups applying an Extreme Programming approach and the
awareness of how efficient and productive the groups are. In addition, a
further examination of specific aspects from both concepts, Agile Methods
and Group Development, was performed to verify the existence of corre-
lations. Through a correlation analysis, a direct link between the effec-
tiveness and productivity of a group and the quality of what was developed
was not encountered. On the other hand, connections from particular char-
acteristics of those variables were found, such as: code quality depends
on the usage of feedbacks and on the encouragement of high performance
and quality work; accomplishment of goals leads to less codemaintenance;
and if subgrouping is stimulated, code refactoring is executed more often.
These findings are important to agile software development, since informa-
tion from different perspectives, such as Psychology, may help discovering
means to improve the outcome of it.

The present study is a step towards a better understanding of assump-
tions that are present in the development environment. In terms of future
research, a larger sample of agile developers already introduced to the
software development scenario is favored. Also, a more precise method
to measure the quality of the code developed, instead of a self opinion
about the matter. Thus, an additional research with the conditions men-
tioned earlier to support or refute this study is recommended.

22

8 Acknowledgements

Special thanks to Alfredo and Lucas, who instructed me from the begin-
ning of this work and gave me assistance and advice to complete it. Also
to the friends I made through this journey, without them I’d be lost in the
middle of it.

Thanks to my family and my chayote that I was able to accomplish one
of the most challenging and arduous goals I set to my life. Only them know
how much I donated myself to achieve it. I’d like to thank my parents,
because they gave everything I needed to be where I am. Also my siblings,
those that I’ll support until the end. Molly, my beloved dog. And specially
Bianca, the person that gave me love, care and made my dreams come
true.

23

9 References

[1] M. Coram and S. Bohner, The Impact of Agile Methods on Software Project
Management, in International Conference and Workshops on the Engineering
of Computer-Based Systems (ECBS’05). IEEE, 2005.

[2] C. Tolfo, R. Wazlawick, M. Ferreira and F. Forcellini, Agile Methods and Or-
ganizational Culture: Reflections about Cultural Levels, in Journal of Software
Maintenance and Evolution: Research and Practice. Software Process: Im-
provement and Practice, pp. 423-441, 2009.

[3] S. Wheelan, B. Davidson and F. Tilin, Group Development Across Time: Re-
ality or Illusion?, in Small Group Research. Vol. 34, No. 2, pp. 223-245,
2003.

[4] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M.
Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick,
R. Martin, S. Mellor, K. Schwaber, J. Sutherloand and D. Thomas, Manifesto
for Agile Software Development, in www.agilemanifesto.org. Retrieved in Oc-
tober 2015.

[5] J. Manzo, Odyssey and Other Code Science Success Stories, in CrossTalk.
Vol. 15, No. 10, pp. 19-21 & 30, 2002.

[6] T. Dybå and T. Dingsøyr, Empirical Studies of Agile Software Development:
A Systematic Review, in Information and Software Technology. pp. 44-53,
2008.

[7] J. McGrath, Time, Interaction and Performance (TIP) A Theory of Groups, in
Small Group Research. Vol. 22, No. 2, pp. 147-174, 1991.

[8] B. Tuckman and M. Jensen, Stages of Small-Group Development Revisited,
in Group & Organization Studies. pp. 419-427, 1977.

[9] B. Fisher, Decision emergence: Phases in group decision making, in Commu-
nication Monographs. pp. 37 & 53-66, 1970.

[10] D. Cohen, M. Lindvall and P. Costa, An Introduction to Agile Methods, in Ad-
vances in Computers. Vol. 62, 2004.

[11] J. Highsmith, K. Orr and A. Cockburn, Extreme Programming, in E-Business
Application Delivery. 2000.

24

[12] S. Wheelan, Group Processes: A developmental perspective, in Boston: Allyn
& Bacon. 1994.

[13] S. Wheelan, The Group Development Questionnaire: A manual for profession-
als, in Provincetown, MA: GDQ Associates. 1994.

[14] B. Boehm, Get Ready for Agile Methods, With Care, in IEEE Computer. IEEE,
2002.

[15] C. Larman and V. Basili, Iterative and Incremental Development: A Brief His-
tory, in IEEE Computer. IEEE, 2003.

[16] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change,
2nd ed. Addison-Wesley, Boston, 2003.

[17] B. Kitchenham and J. Walker, A Quantitative Approach to Monitoring Software
Development, in Software Engineering Journal. pp. 2-14, 1989.

[18] IEEE, IEEE Standard for Software Quality Assurance and Processes, in IEEE
Std 730-2014. 2014.

[19] P. Sfetsos and I. Stamelos, Empirical Studies on Quality in Agile Practices: A
Systematic Literature Review, in 2010 Seventh International Conference on
the Quality of Information and Communications Technology. IEEE, 2010.

[20] A. Adnan, A. Akram and F. Akram, Group Development: Theory and Practice,
in Middle-East Journal of Scientific Research. Vol 16, No. 10, pp. 1428-1435,
2013.

[21] R. Bales, Interaction Process Analysis: A Method for the Study of Small
Groups, in Addison–Wesley Press, Inc. 1950.

[22] D. Johson and F. Johson, Joining Together: Group Theory and Group Skills,
in A and B Publishing. 8th ed. 2003.

[23] S. Wheelan, C. Burchill and F. Tilin, The Link Between Teamworks and Pa-
tients’ Outcomes in Intensive Care Units, in American Journal of Critical Care.
Vol. 12, No. 6, pp 527-534, 2003.

[24] S. Wheelan and F. Tilin, The Relationship Between Faculty Group Develop-
ment and School Productivity, in Small Group Research. Vol. 30, No. 1, pp
59-81, 1999.

[25] J. Cohen, Quantitative Methods in Psychology, in Psychologycal Bulletin. Vol.
112, No. 1, pp 155-159, 1992.

25

