ESTUDO COMPARATIVO DE ALGORITMOS DE RECOMENDAÇÃO

Marcos Masanobu Takahashi Orientador: Roberto Hirata Jr.

ESTUDO COMPARATIVO DE ALGORITMOS DE RECOMENDAÇÃO

Marcos Masanobu Takahashi Orientador: Roberto Hirata Jr.

CONTEXTUALIZAÇÃO: E-COMMERCE

Forte concorrência (muitos competidores)

• Baixa quantidade de visualização de páginas por visita (média de 4 a 5)

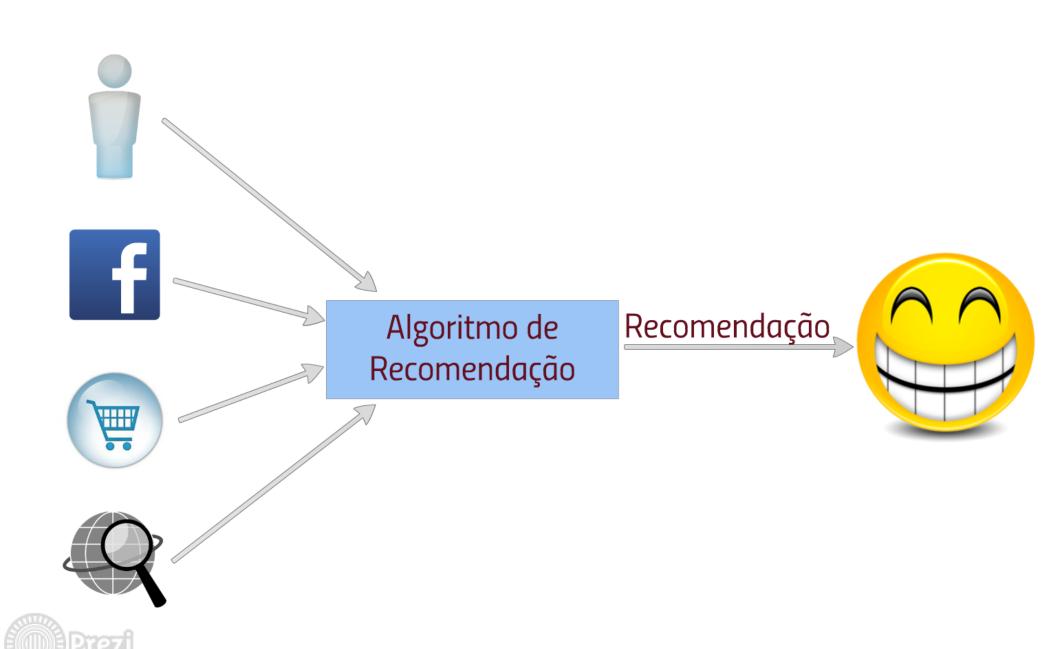
Baixo tempo de navegação no site (3 a 4 minutos)

Comparativo dos maiores players

	Pageviews / Visita	Duração da Visita	
Submarino	4,73	4:32	
extra .com.br	5,36	4:42	
magazineluiza vem ser feliz	3,79	3:57	
<u>americanas</u> .com	4,61	4:30	
Walmart 💢	3,37	3:19	
NETSHOES SEM LIMITES ENTRE VOCÊ E O ESPORTE	2,96	3:25	

Fonte: (2) Alexa

Recomendação



ESTUDO COMPARATIVO DE ALGORITMOS DE RECOMENDAÇÃO

Marcos Masanobu Takahashi Orientador: Roberto Hirata Jr.

OBJETIVOS

- Implementação dos Algoritmos:
 - Large-scale Parallel Collaborative Filtering;
 - Fast Context-aware Recommendations with Factorization Machines;

 Compará-los em um contexto restrito do mundo real (ecommerce de Móveis e Utilidades Domésticas)

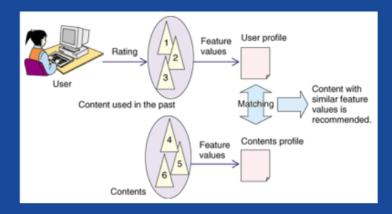
Comparar o retorno financeiro de cada algoritmo.

SISTEMAS DE RECOMENDAÇÃO

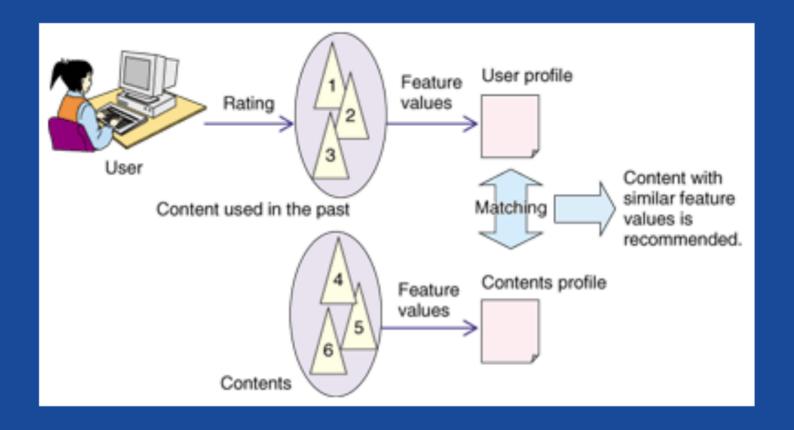
- Combinação de várias técnicas computacionais para selecionar itens personalizados com base nos interesses dos usuários e conforme o contexto no qual estão inseridos. (Wikipedia)
- São comumente divididos em 3 tipos de algoritmos:
 - Content-based Filtering
 - Collaborative Filtering
 - Hybrid Recommender Systems
- Existe uma nova classe de sistemas de recomendação chamada Context-aware Recommender Systems

Content-based Filtering

- Recomenda itens semelhantes aos já comprados / interagidos pelo usuário;
- "Aprende" o perfil do usuário através dos itens anteriores;
- Procura novos itens com "match" no perfil do usuário;
- Recomenda os itens com a melhor taxa de "match".

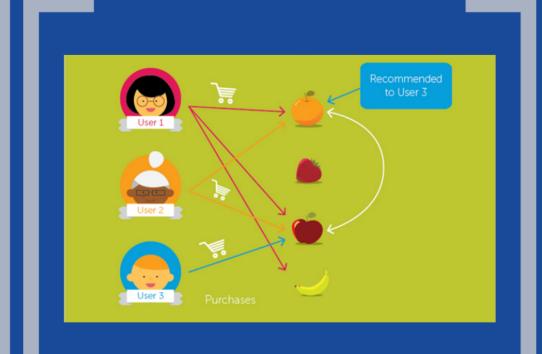


- Recomenda itens semelhantes aos já comprados / interagidos pelo usuário;
- "Aprende" o perfil do usuário através dos itens anteriores;
- Procura novos itens com "match" no perfil do usuário;
- Recomenda os itens com a melhor taxa de "match".

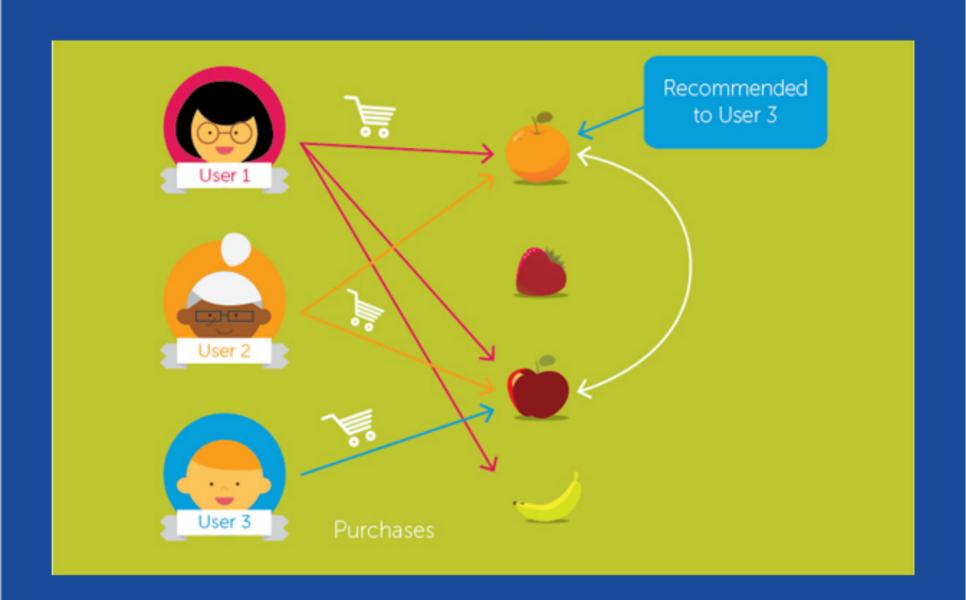


Collaborative Filtering

- "Quem comprou X também comprou Y"
- Recomenda itens que usuários semelhantes já compraram / interagiram;
- Através dos produtos já comprados / interagidos, procura usuários semelhantes;
- Seleciona o produto com maior rating e que o usuário ainda não interagiu.

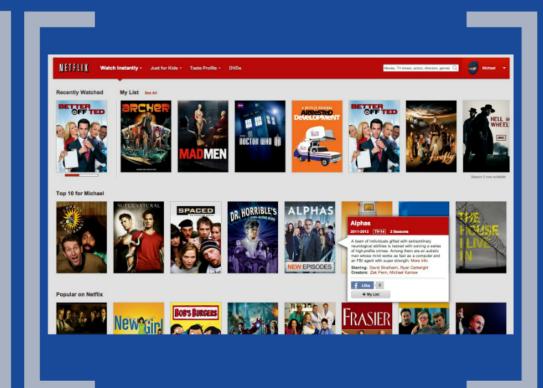


- "Quem comprou X também comprou Y"
- Recomenda itens que usuários semelhantes já compraram / interagiram;
- Através dos produtos já comprados / interagidos, procura usuários semelhantes;
- Seleciona o produto com maior rating e que o usuário ainda não interagiu.



Hybrind Recommender Systems

- Combina as abordagens de Content-based Filtering e Collaborative Filtering;
- Diversas formas de implementação:
 - aplicação dos dois separados e juntar depois;
 - adicionando capacidade de content-based a Collaborative Filtering (ou vice-versa);
 - unificação das duas abordagens em um único modelo.



- Combina as abordagens de Content-based Filtering e Collaborative Filtering;
- Diversas formas de implementação:
 - aplicação dos dois separados e juntar depois;
 - adicionando capacidade de content-based a Collaborative Filtering (ou vice-versa);
 - unificação das duas abordagens em um único modelo.

NETFLIX

Watch Instantly -

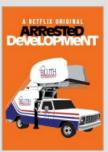
Just for Kids + Taste Profile +

DVDs

Movies, TV shows, actors, directors, genres Q

Recently Watched

My List See All

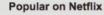


Season 2 now available

Top 10 for Michael

A team of individuals gifted with extraordinary neurological abilities is tasked with solving a series of high-profile crimes. Among them are an autistic man whose mind works as fast as a computer and an FBI agent with super strength. More Info

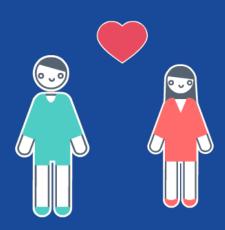
Starring: David Strathairn, Ryan Cartwright Creators: Zak Penn, Michael Karnow



Context-aware Recommender Systems

- Técnica muito recente e em desenvolvimento;
- Gera recomendações muito mais personalizadas e abrangentes;
- Abrange além de dados de *User* e *Item*, dados do *Contexto* que levaram ao acontecimendo de dado evento.

- Técnica muito recente e em desenvolvimento;
- Gera recomendações muito mais personalizadas e abrangentes;
- Abrange além de dados de *User* e *Item*, dados do *Contexto* que levaram ao acontecimendo de dado evento.



LARGE-SCALE PARALLEL COLLABORATIVE FILTERING

- Foi desenvolvido para a competição Netflix Prize e melhorou o desempenho do algoritmo que era utilizado pela Netflix (Cine-Match) em 5.91%;
- Utiliza um método simples e escalável para grandes volumes de dados;
- É paralelizável;
- Usa somente dados de User e Item.

Abordagem tradicional de algoritmos de recomendação:

f: User x Item -> Rating

Estimar os ratings que não foram dados através da função *f*.

Este algoritmo decompõe a matriz R de ratings em U e I, tal que:

າກໍ ຂໍ o ກໍລາວະຕຸ de variáveis consideradas no modelo

Passo a passo do algoritmo:

- 1- Inicializar a matriz I, atribuindo o rating médio do item na primeira coluna e valores aleatórios próximos de 0 nas outras colunas;
- 2- Fixa *I* e resolve *U*, minimizando a função objetivo;
- 3- Fixa *U* e resolve *I*, minimizando a função objetivo;
- 4- Repetir 2 e 3 até atingir o critério de parada.

O critério de parada utilizado é de Raíz Quadrada do Erro Quadrático Médio.

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (r_i - \hat{r}_i)^2}$$

A decomposição em U e I se dá resolvendo a seguinte função:

$$f(U, I) = \sum_{(i,j) \in I} (r_{ij} - u_i^T i_j)^2 + \lambda \left(\sum_i n_{u_i} ||u_i||^2 + \sum_j n_{i_j} ||i_j||^2 \right)$$

E para resolver *U* dado *I*, tem-se:

$$u_i = A_i^{-1} V_i, \quad \forall i$$

onde: $A_i = I_{N_i} I_{N_i}^T + \lambda n_{u_i} E$,

 $V_i = I_{N_i} R^T(i, N_i),$

E é a matriz identidade de $n_f \times n_f$,

 I_{N_i} denota a submatriz de I onde as colunas $j \in N_i$ são selecionadas $R(i,I_i)$ é a matriz onde as colunas $j \in I_i$ da linha i é selecionada.

 N_i são os usuários com rating no item i

 λ é o coeficiente de regularização, setado manualmente.

A resolução de I dado U é análoga, alternando-se User para Item

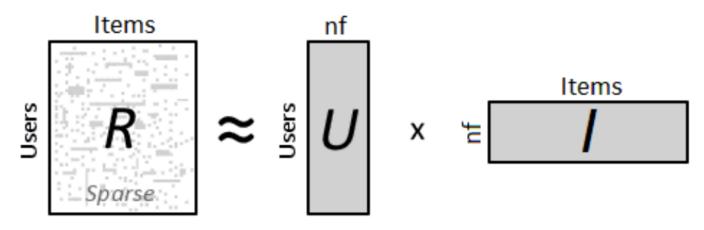
- Foi desenvolvido para a competição Netflix Prize e melhorou o desempenho do algoritmo que era utilizado pela Netflix (Cine-Match) em 5.91%;
- Utiliza um método simples e escalável para grandes volumes de dados;
- É paralelizável;
- Usa somente dados de User e Item.

Abordagem tradicional de algoritmos de recomendação:

f: User x Item -> Rating

Estimar os ratings que não foram dados através da função *f*.

Este algoritmo decompõe a matriz *R* de ratings em *U* e *I*, tal que:



nt é o número de variáveis consideradas no modelo

Passo a passo do algoritmo:

- 1- Inicializar a matriz I, atribuindo o rating médio do item na primeira coluna e valores aleatórios próximos de 0 nas outras colunas;
- 2- Fixa I e resolve U, minimizando a função objetivo;
- 3- Fixa *U* e resolve *I*, minimizando a função objetivo;
- 4- Repetir 2 e 3 até atingir o critério de parada.

O critério de parada utilizado é de Raíz Quadrada do Erro Quadrático Médio.

RMSE =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (r_i - \hat{r}_i)^2}$$

A decomposição em U e I se dá resolvendo a seguinte função:

$$f(U,I) = \sum_{(i,j)\in I} (r_{ij} - u_i^T i_j)^2 + \lambda \left(\sum_i n_{u_i} ||u_i||^2 + \sum_j n_{i_j} ||i_j||^2 \right)$$

E para resolver *U* dado *I*, tem-se:

$$u_i = A_i^{-1} V_i, \quad \forall i$$

onde: $A_i = I_{N_i} I_{N_i}^T + \lambda n_{u_i} E$,

 $V_i = I_{N_i} R^T(i, N_i),$

E é a matriz identidade de $n_f \times n_f$,

 I_{N_i} denota a submatriz de I onde as colunas $j \in N_i$ são selecionadas $R(i, I_i)$ é a matriz onde as colunas $j \in I_i$ da linha i é selecionada.

 N_i são os usuários com rating no item i

 λ é o coeficiente de regularização, setado manualmente.

A resolução de I dado U é análoga, alternando-se User para Item

LARGE-SCALE PARALLEL COLLABORATIVE FILTERING

- Foi desenvolvido para a competição Netflix Prize e melhorou o desempenho do algoritmo que era utilizado pela Netflix (Cine-Match) em 5.91%;
- Utiliza um método simples e escalável para grandes volumes de dados;
- É paralelizável;
- Usa somente dados de User e Item.

Abordagem tradicional de algoritmos de recomendação:

f: User x Item -> Rating

Estimar os ratings que não foram dados através da função *f*.

Este algoritmo decompõe a matriz R de ratings em U e I, tal que:

າກໍ ຂໍ o ກໍລາວະຕຸ de variáveis consideradas no modelo

Passo a passo do algoritmo:

- 1- Inicializar a matriz I, atribuindo o rating médio do item na primeira coluna e valores aleatórios próximos de 0 nas outras colunas;
- 2- Fixa *I* e resolve *U*, minimizando a função objetivo;
- 3- Fixa *U* e resolve *I*, minimizando a função objetivo;
- 4- Repetir 2 e 3 até atingir o critério de parada.

O critério de parada utilizado é de Raíz Quadrada do Erro Quadrático Médio.

$$\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (r_i - \hat{r}_i)^2}$$

A decomposição em U e I se dá resolvendo a seguinte função:

$$f(U, I) = \sum_{(i,j) \in I} (r_{ij} - u_i^T i_j)^2 + \lambda \left(\sum_i n_{u_i} ||u_i||^2 + \sum_j n_{i_j} ||i_j||^2 \right)$$

E para resolver *U* dado *I*, tem-se:

$$u_i = A_i^{-1} V_i, \quad \forall i$$

onde: $A_i = I_{N_i} I_{N_i}^T + \lambda n_{u_i} E$,

 $V_i = I_{N_i} R^T(i, N_i),$

E é a matriz identidade de $n_f \times n_f$,

 I_{N_i} denota a submatriz de I onde as colunas $j \in N_i$ são selecionadas $R(i,I_i)$ é a matriz onde as colunas $j \in I_i$ da linha i é selecionada.

 N_i são os usuários com rating no item i

 λ é o coeficiente de regularização, setado manualmente.

A resolução de I dado U é análoga, alternando-se User para Item

FAST CONTEXT-AWARE RECOMMENDATIONS WITH FACTORIZATION MACHINES

- Usa dados de User, Item e Context (praticamente tudo).
- Os algoritmos Context-aware costumam ser computacionalmente custosos, já que utilizam diversos tipos de dados;
- O algoritmo Multiverse Recommendation, que possuía um dos melhores desempenhos em recomendação tem complexidade O(km)
- Este algoritmo tem complexidade O(|S|mk)
- · Utiliza uma abordagem chamada Factorization Machine

Factorization Machines são modelos de classes genéricas que agregam e imitam diversos tipos de sistemas de recomendação.

Eles modelam todas interações entre pares de variáveis através de:

$$y(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \hat{w}_{i,j} x_i x_j$$

onde:

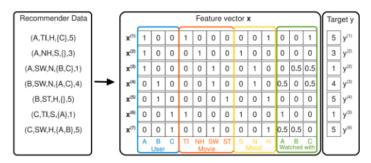
$$\hat{w}_{i,j} := \langle v_i, v_j \rangle = \sum_{f=1}^k v_{i,f} \cdot v_{j,f}$$

é a interação entre os pares de variáveis e

$$w_0 \in \mathbb{R}, \quad w \in \mathbb{R}^n, \quad V \in \mathbb{R}^{n \times k}$$

são os parâmetros a serem estimados.

A modelagem de dados deve ser da seguinte forma:



onde o input do algoritmo é o vetor x resultante. Cada parâmetro a ser estimado é encontrado através da função:

$$\theta = -\frac{\sum_{(\mathbf{x},y)\in S} (g_{(\theta)}(\mathbf{x}) - y) h_{(\theta)}(\mathbf{x})}{\sum_{(\mathbf{x},y)\in S} h_{(\theta)}^2(\mathbf{x}) + \lambda_{(\theta)}}$$

Passo a passo do algoritmo:

- 1- Inicializa w0, w e V com valores 0;
- 2- Computa matrizes auxiliares e, q;
- 3- Computa o valor de *w0*;
- 4- Computa os valores de *w*;
- 5- Computa os valores de *V*;
- 6- Repete 3, 4, 5 até atingir o critério de parada.

O critério de parada utilizado foram o número de máximo de iterações.

- Usa dados de User, Item e Context (praticamente tudo).
- Os algoritmos Context-aware costumam ser computacionalmente custosos, já que utilizam diversos tipos de dados;
- O algoritmo *Multiverse Recommendation*, que possuía um dos melhores desempenhos em recomendação tem complexidade $O(k^m)$
- Este algoritmo tem complexidade O(|S|mk)
- Utiliza uma abordagem chamada Factorization Machine

Factorization Machines são modelos de classes genéricas que agregam e imitam diversos tipos de sistemas de recomendação.

Eles modelam todas interações entre pares de variáveis através de:

$$y(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \hat{w}_{i,j} x_i x_j$$

onde:

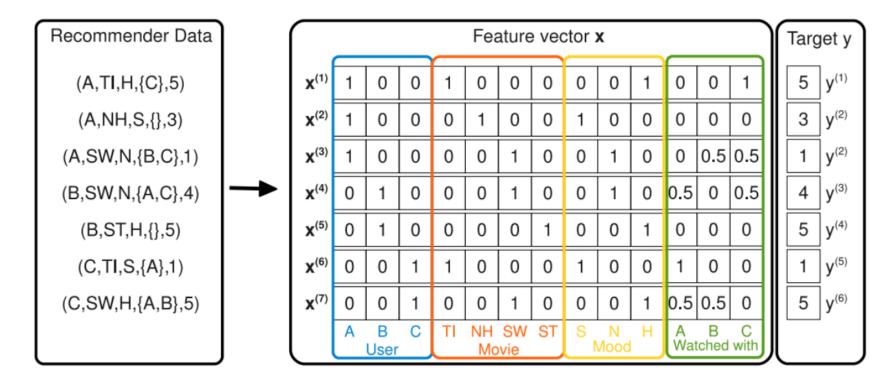
$$\hat{w}_{i,j} := \langle v_i, v_j \rangle = \sum_{f=1}^k v_{i,f} \cdot v_{j,f}$$

é a interação entre os pares de variáveis e

$$w_0 \in \mathbb{R}, \quad w \in \mathbb{R}^n, \quad V \in \mathbb{R}^{n \times k}$$

são os parâmetros a serem estimados.

A modelagem de dados deve ser da seguinte forma:



onde o input do algoritmo é o vetor x resultante. Cada parâmetro a ser estimado é encontrado através da função:

$$\theta = -\frac{\sum_{(\mathbf{x},y)\in S} (g_{(\theta)}(\mathbf{x}) - y) h_{(\theta)}(\mathbf{x})}{\sum_{(\mathbf{x},y)\in S} h_{(\theta)}^2(\mathbf{x}) + \lambda_{(\theta)}}$$

Passo a passo do algoritmo:

- 1- Inicializa w0, $w \in V$ com valores 0;
- 2- Computa matrizes auxiliares *e*, *q*;
- 3- Computa o valor de *w0*;
- 4- Computa os valores de *w*;
- 5- Computa os valores de *V*;
- 6- Repete 3, 4, 5 até atingir o critério de parada.

O critério de parada utilizado foram o número de máximo de iterações.

FAST CONTEXT-AWARE RECOMMENDATIONS WITH FACTORIZATION MACHINES

- Usa dados de User, Item e Context (praticamente tudo).
- Os algoritmos Context-aware costumam ser computacionalmente custosos, já que utilizam diversos tipos de dados;
- O algoritmo Multiverse Recommendation, que possuía um dos melhores desempenhos em recomendação tem complexidade O(km)
- Este algoritmo tem complexidade O(|S|mk)
- · Utiliza uma abordagem chamada Factorization Machine

Factorization Machines são modelos de classes genéricas que agregam e imitam diversos tipos de sistemas de recomendação.

Eles modelam todas interações entre pares de variáveis através de:

$$y(x) := w_0 + \sum_{i=1}^n w_i x_i + \sum_{i=1}^n \sum_{j=i+1}^n \hat{w}_{i,j} x_i x_j$$

onde:

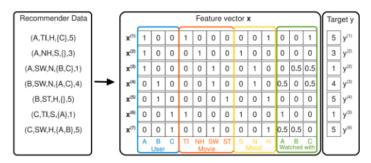
$$\hat{w}_{i,j} := \langle v_i, v_j \rangle = \sum_{f=1}^k v_{i,f} \cdot v_{j,f}$$

é a interação entre os pares de variáveis e

$$w_0 \in \mathbb{R}, \quad w \in \mathbb{R}^n, \quad V \in \mathbb{R}^{n \times k}$$

são os parâmetros a serem estimados.

A modelagem de dados deve ser da seguinte forma:



onde o input do algoritmo é o vetor x resultante. Cada parâmetro a ser estimado é encontrado através da função:

$$\theta = -\frac{\sum_{(\mathbf{x},y)\in S} (g_{(\theta)}(\mathbf{x}) - y) h_{(\theta)}(\mathbf{x})}{\sum_{(\mathbf{x},y)\in S} h_{(\theta)}^2(\mathbf{x}) + \lambda_{(\theta)}}$$

Passo a passo do algoritmo:

- 1- Inicializa w0, w e V com valores 0;
- 2- Computa matrizes auxiliares e, q;
- 3- Computa o valor de *w0*;
- 4- Computa os valores de *w*;
- 5- Computa os valores de *V*;
- 6- Repete 3, 4, 5 até atingir o critério de parada.

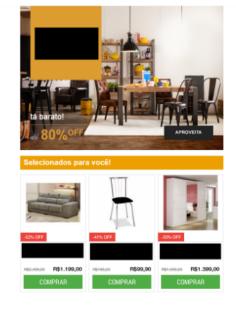
O critério de parada utilizado foram o número de máximo de iterações.

TESTES

- Todos os códigos e testes foram implementados em R e os dados utilizados são de uma empresa de comércio eletrônico do setor de Móveis e Utilidades Domésticas.
- Dados utilizados:
 - Collaborative Filtering: User (id_user), Item (id_item), Rating (#compras do item);
 - Context Recommendations: User (id_user, sexo, idade, estado(geográfico)), Item (id_item, categoria, cor), Contexto (proximidade da compra com datas especiais, uso de cupom de desconto, recompra, likes em tags de Facebook, agrupamento de dados de navegação com abandono de carrinho) e Rating (#compras do item).

- Collaborative Filtering:
 - base de 1 milhão de linhas;
 - aproximadamente 300000 Users x 50000 Item;
- · Context Recommendations:
 - ordens 1 milhão de linhas, intenção de compra 200000 linhas, facebook - 30000 linhas
 - aproximadamente 1 milhão de linhas x 400000 variáveis
- Todos os testes rodaram em máquina com Ubuntu Server 64bits, 24 cores, 128GB RAM, 2 TB Disco
- · Tempo de execução:
 - Collaborative Filtering com nf = 100, 6h;
 - Context Recommendations com nf = 5, 40h.

- · Testes "reais":
 - Envio de campanhas de E-mail Marketing (dias 29, 30, 31 de outubro e 5 e 6 de novembro);
 - 22 grupos de aproximadamente 10000 pessoas, sendo:
 - 1 grupo selecionado pelo algoritmo Large-scale Parallel Collaborative Filtering;
 - 1 grupo selecionado pelo algoritmo Fast Context-aware Recommendations with Factorization Machines;
 - 20 grupos aleatórios sem aplicação de algoritmo.
 - Não houve sobreposição de pessoas dos mesmos algoritmos em disparos diferentes, ou seja, uma pessoa não recebeu mais de uma campanha de dado algoritmo.



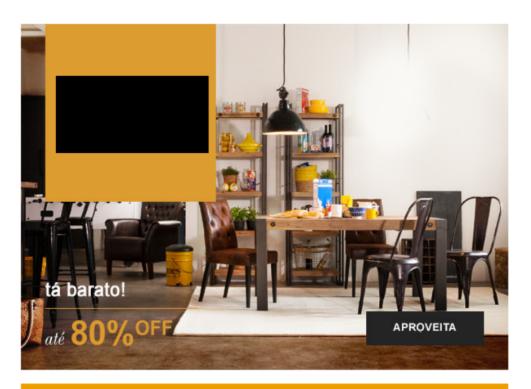
 Todos os códigos e testes foram implementados em R e os dados utilizados são de uma empresa de comércio eletrônico do setor de Móveis e Utilidades Domésticas.

Dados utilizados:

- Collaborative Filtering: User (id_user), Item (id_item),
 Rating (#compras do item);
- Context Recommendations: User (id_user, sexo, idade, estado(geográfico)), Item (id_item, categoria, cor), Contexto (proximidade da compra com datas especiais, uso de cupom de desconto, recompra, likes em tags de Facebook, agrupamento de dados de navegação com abandono de carrinho) e Rating (#compras do item).

- Collaborative Filtering:
 - base de 1 milhão de linhas;
 - aproximadamente 300000 Users x 50000 Item;
- Context Recommendations:
 - ordens 1 milhão de linhas, intenção de compra 200000 linhas, facebook - 30000 linhas
 - aproximadamente 1 milhão de linhas x 400000 variáveis
- Todos os testes rodaram em máquina com Ubuntu Server 64bits,
 24 cores, 128GB RAM, 2 TB Disco
- Tempo de execução:
 - Collaborative Filtering com nf = 100, 6h;
 - Context Recommendations com nf = 5, 40h.

- Testes "reais":
 - Envio de campanhas de E-mail Marketing (dias 29, 30, 31 de outubro e 5 e 6 de novembro);
 - 22 grupos de aproximadamente 10000 pessoas, sendo:
 - 1 grupo selecionado pelo algoritmo Large-scale Parallel Collaborative Filtering;
 - 1 grupo selecionado pelo algoritmo Fast Context-aware Recommendations with Factorization Machines;
 - 20 grupos aleatórios sem aplicação de algoritmo.
 - Não houve sobreposição de pessoas dos mesmos algoritmos em disparos diferentes, ou seja, uma pessoa não recebeu mais de uma campanha de dado algoritmo.



Selecionados para você!

-52% OFF

-30% OFF

R\$2.499,00 R\$1.199,00

COMPRAR

R\$169,99 R\$99,90 COMPRAR

R\$1.999,00 R\$1.399,00

RESULTADOS

Métricas de E-mail Marketing

- · Quantidade de e-mails enviados (sent)
- Quantidade de e-mails abertos (open)
- · Quantidade de e-mails clicados (click)
- Quantidade de ordens geradas (orders)
- Receita gerada (revenue)

open (%): open / sentCTR (%): click / sent

click to open (%): click / open
conversion (%): orders / click

• revenue / email: revenue / sent

data	base	CTR %	click to open %	revenue / email
29/10/2014	normal	0.00%	0.00%	R\$ 0.00
29/10/2014	context_aware	1.94%	6.83%	-R\$ 0.06
29/10/2014	large_scale_cf	15.92%	14.59%	R\$ 0.04
30/10/2014	normal	0.00%	0.00%	R\$ 0.00
30/10/2014	context_aware	5.68%	5.58%	-R\$ 0.02
30/10/2014	large_scale_cf	8.54%	6.75%	-R\$ 0.03
31/10/2014	normal	0.00%	0.00%	R\$ 0.00
31/10/2014	context_aware	4.04%	11.91%	R\$ 0.04
31/10/2014	large_scale_cf	6.65%	9.35%	R\$ 0.02
05/11/2014	normal	0.00%	0.00%	R\$ 0.00
05/11/2014	context_aware	24.51%	22.25%	R\$ 0.08
05/11/2014	large_scale_cf	31.27%	25.17%	R\$ 0.12
06/11/2014	normal	0.00%	0.00%	R\$ 0.00
06/11/2014	context_aware	18.39%	14.28%	R\$ 0.05
06/11/2014	large_scale_cf	16.85%	25.84%	R\$ 0.09

base	CTR %	click to open %	revenue / email
normal	0.00%	0.00%	R\$ 0.00
context_aware	8.39%	9.67%	R\$ 0.01
large_scale_cf	13.65%	14.06%	R\$ 0.04

Conclusão

- Recomendação melhorou o desempenho tanto em procura (clicks) quanto em receita;
- Collaborative Filtering teve um desempenho melhor;
- Context-aware precisa selecionar muito bem os contextos e também aumentar o número de features (nf);

Próximos passos

- · Recomendação online;
- Incorporar dados de navegação e carrinho no Collaborative Filtering;
- Testar novos contextos e aumentar o número de features;
- · Testar recomendação conjunta dos 2 algoritmos.

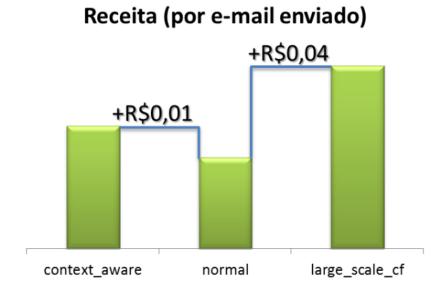
Métricas de E-mail Marketing

- Quantidade de e-mails enviados (sent)
- Quantidade de e-mails abertos (open)
- Quantidade de e-mails clicados (click)
- Quantidade de ordens geradas (orders)
- Receita gerada (revenue)
- open (%): open / sent
- CTR (%): click / sent
- click to open (%): click / open
- conversion (%): orders / click
- revenue / email: revenue / sent

data	base	CTR %	click to open %	revenue / email
29/10/2014	normal	0.00%	0.00%	R\$ 0.00
29/10/2014	context_aware	1.94%	6.83%	-R\$ 0.06
29/10/2014	large_scale_cf	15.92%	14.59%	R\$ 0.04
30/10/2014	normal	0.00%	0.00%	R\$ 0.00
30/10/2014	context_aware	5.68%	5.58%	-R\$ 0.02
30/10/2014	large_scale_cf	8.54%	6.75%	-R\$ 0.03
31/10/2014	normal	0.00%	0.00%	R\$ 0.00
31/10/2014	context_aware	4.04%	11.91%	R\$ 0.04
31/10/2014	large_scale_cf	6.65%	9.35%	R\$ 0.02
05/11/2014	normal	0.00%	0.00%	R\$ 0.00
05/11/2014	context_aware	24.51%	22.25%	R\$ 0.08
05/11/2014	large_scale_cf	31.27%	25.17%	R\$ 0.12
06/11/2014	normal	0.00%	0.00%	R\$ 0.00
06/11/2014	context_aware	18.39%	14.28%	R\$ 0.05
06/11/2014	large_scale_cf	16.85%	25.84%	R\$ 0.09

base	CTR %	click to open %	revenue / email
normal	0.00%	0.00%	R\$ 0.00
context_aware	8.39%	9.67%	R\$ 0.01
large_scale_cf	13.65%	14.06%	R\$ 0.04

table to the state of the state



Conclusão

- Recomendação melhorou o desempenho tanto em procura (clicks) quanto em receita;
- Collaborative Filtering teve um desempenho melhor;
- Context-aware precisa selecionar muito bem os contextos e também aumentar o número de features (nf);

Próximos passos

- Recomendação online;
- Incorporar dados de navegação e carrinho no Collaborative Filtering;
- Testar novos contextos e aumentar o número de features;
- Testar recomendação conjunta dos 2 algoritmos.

DÚVIDAS?

