Aluno: Tiago Andrade Togores

Orientador: Professor Flávio Soares Côrrea da Silva

Vitruvius: Um Reconhecedor de Gestos para o Kinect

Introdução

Contextualização

Interação humano-computador

Contextualização

- Interação humano-computador
- Interfaces naturais

Contextualização

- Interação humano-computador
- Interfaces naturais
- Popularização
 - Wii
 - Smartphones
 - Tablets
 - Kinect

Objetivos

- Desenvolvimento de um programa que
 - reconheça gestos
 - treine gestos
 - alcance usuários comuns

Objetivos

- Desenvolvimento de um programa que
 - reconheça gestos -> inteligência artificial
 - treine gestos -> aprendizado computacional
 - alcance usuários comuns -> Windows

Kinect

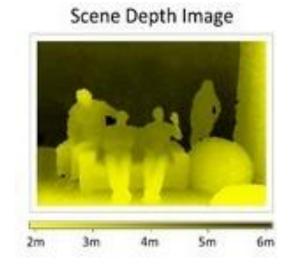
Hardware

- Câmera RGB
 - Resolução: 640x480
 - Taxa de atualização: 30 fps
 - Field of view (vertical): 43°
 - Field of view (horizontal): 57°
 - Stream: 32-bit

Scene

Hardware

- Sensor de profundidade
 - Resolução: 640x480
 - Taxa de atualização: 30 fps
 - Field of view (vertical): 43°
 - Field of view (horizontal): 57°
 - Stream: 16-bit



Hardware

Microfones

Motor

OpenNI

Open Natural Interaction

OpenNI

- Organização
- Interoperabilidade:
 - Dispositivos
 - Aplicações
 - Middleware

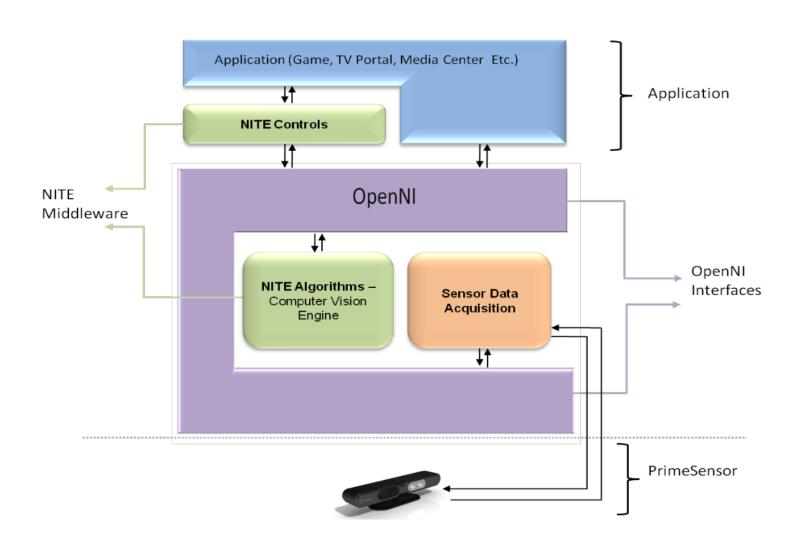
OpenNI Framework

- API camada intermediária
- Production Chain
- Multi-plataforma
- Várias linguagens
- Gravação dados
- Uso com diferentes dispositivos

NITE

- Middleware
- Visão computacional
- Detecção de usuários
- Rastreamento
- 8 ativos

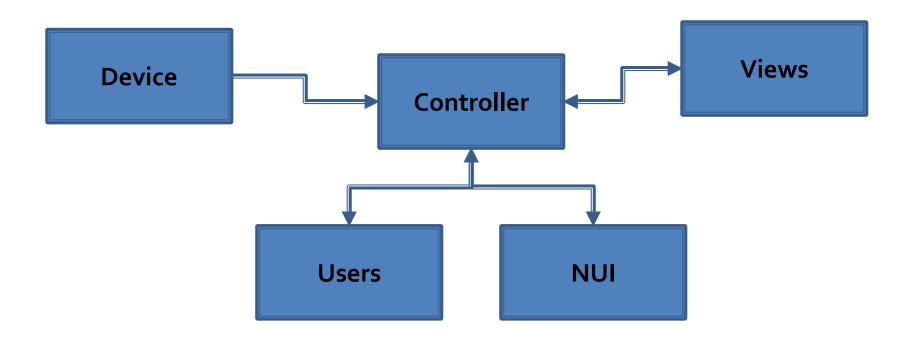
Arquitetura



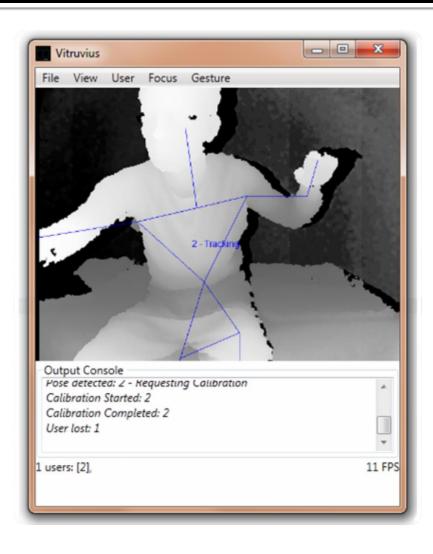
Vitruvius

Arquitetura

Model-View-Presenter (Passive View)



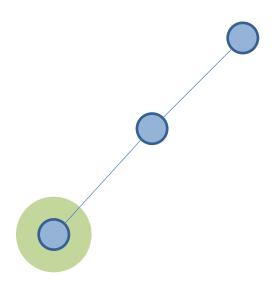
Interface

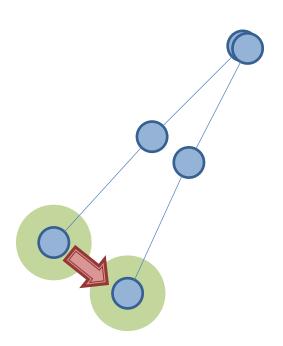


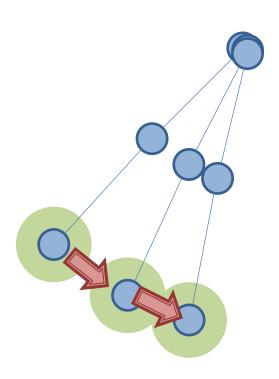
Pipeline

Dados Extração Filtragem Quantização HMM

- Características:
 - Posição
 - Orientação
 - Velocidade
 - Aceleração
- Escolha delas é MUITO IMPORTANTE







Filtragem

- Informação Redundante
- Representação mínima
- Filtro de semelhança

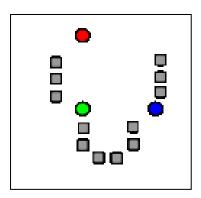
 Mapeamento de vetores para números inteiros

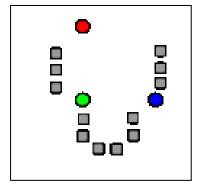
$$Q: \mathbb{R}^m \mapsto \mathbb{Z}_n$$

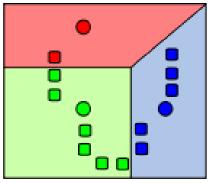
 Mapeamento de vetores para números inteiros

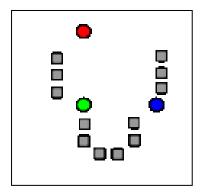
$$Q: \mathbb{R}^m \mapsto \mathbb{Z}_n$$

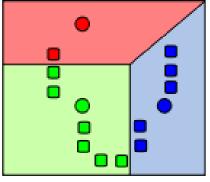
Particionar o espaço

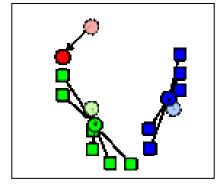


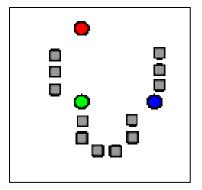


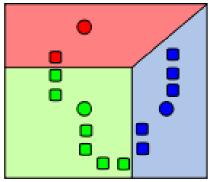


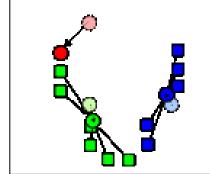


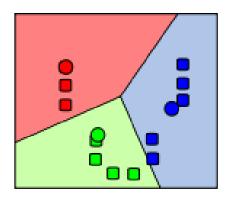












Hidden Markov Model (HMM)

Cada modelo representa um gesto

Hidden Markov Model (HMM)

- Cada modelo representa um gesto
- Processo duplamente estocástico
- Estados ocultos variam com o tempo
- Observações emitidas pelo estados
- Parâmetros conhecidos
- Propriedade de Markov

HMM - Definição

$$\lambda = (N, M, A, B, \pi)$$

$$S = \{1, ..., N\}$$

$$V = \{1, ..., M\}$$

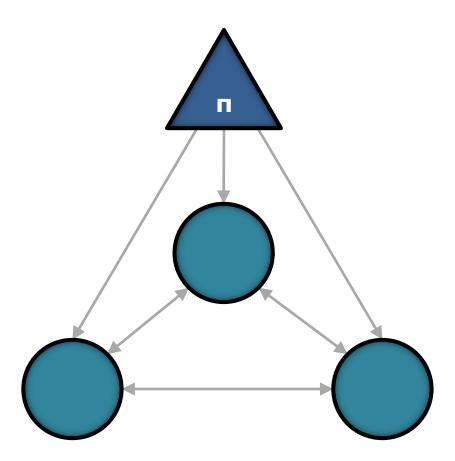
$$a_{ij} = P(X_{t+1} = j | X_t = i)$$

$$b_j(k) = P(Y_t = k | X_t = j)$$

$$\pi_i = P(X_1 = i)$$

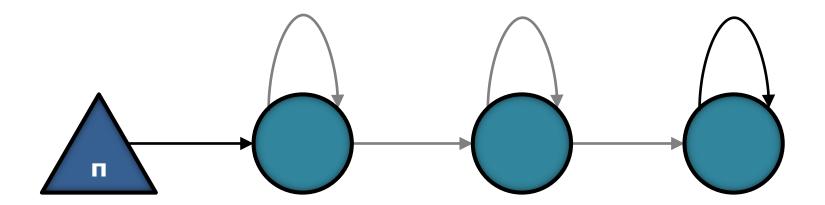
HMM - Topologia

Ergódica

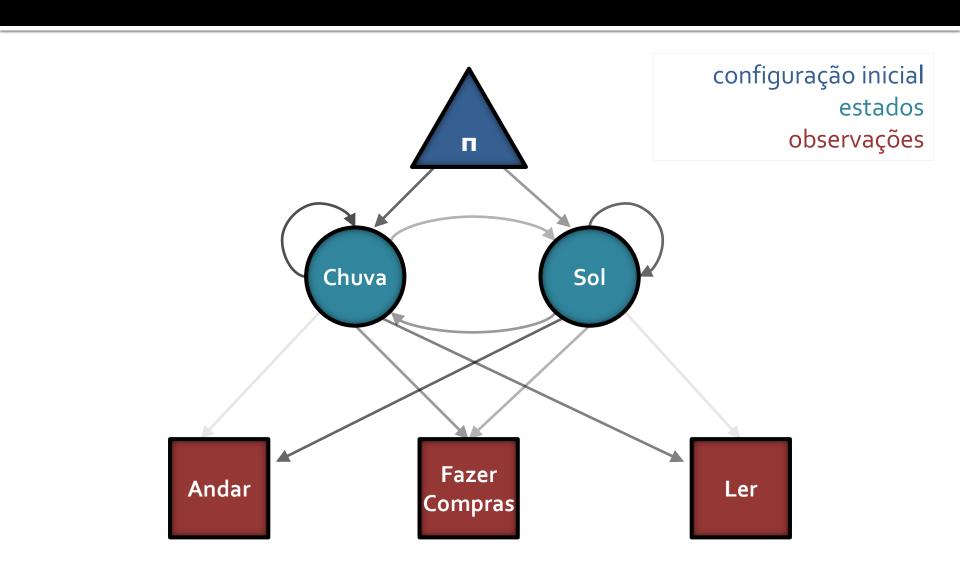


HMM - Topologia

Bakis



HMM - Exemplo



HMM - Problemas Canônicos

- Estimação
- Decodificação
- Aprendizagem

HMM - Problemas Canônicos

- Estimação -> Reconhecimento
- Decodificação
- Aprendizagem -> Treinamento

 Problema: computar eficientemente a probabilidade de uma sequência de observações dado um HMM

$$P(O|\lambda) = P(O_1, ..., O_T|\lambda)$$

Variável Forward:

$$\alpha_t(i) = P(O_1, ..., O_t, X_t = i | \lambda)$$

Variável Forward:

$$\alpha_t(i) = P(O_1, ..., O_t, X_t = i | \lambda)$$

Por Indução:

$$\alpha_1(i) = \pi_i b_i(O_1), 1 \le i \le N$$

$$\alpha_{t+1}(j) = [\sum_{i=1}^{N} \alpha_t(i) a_{ij}] b_j(O_{t+1}),$$

$$1 \le t \le T - 1, 1 \le j \le N$$

Variável Backward:

$$\beta_t(i) = P(O_{t+1}, ..., O_T | X_t = i, \lambda)$$

Variável Backward:

$$\beta_t(i) = P(O_{t+1}, ..., O_T | X_t = i, \lambda)$$

Por Indução:

$$\beta_T(i) = 1, 1 \le i \le N$$

$$\beta_t(i) = \sum_{j=1}^N a_{ij} b_j(O_{t+1}) \beta_{t+1}(j),$$

$$1 \le t \le T - 1, 1 \le j \le N$$

Solução:

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

$$P(O|\lambda) = \sum_{i=1}^{N} \pi_i \beta_1(i) b_i(O_1)$$

Solução:

$$P(O|\lambda) = \sum_{i=1}^{N} \alpha_T(i)$$

$$P(O|\lambda) = \sum_{i=1}^{N} \pi_i \beta_1(i) b_i(O_1)$$

• Complexidade: $O(N^2T)$

Temos

$$P(O|\lambda_i)$$

Temos

$$P(O|\lambda_i)$$

• Queremos $\lambda^* = argmax_{\lambda_i}P(\lambda_i|O)$

Temos

$$P(O|\lambda_i)$$

• Queremos
$$\lambda^* = argmax_{\lambda_i}P(\lambda_i|O)$$

Bayes:

$$P(\lambda_i|O) = \frac{P(\lambda_i)P(O|\lambda_i)}{P(O)}$$

Temos

$$P(O|\lambda_i)$$

• Queremos
$$\lambda^* = argmax_{\lambda_i}P(\lambda_i|O)$$

Bayes:

$$P(\lambda_i|O) = \frac{P(\lambda_i)P(O|\lambda_i)}{P(O)}$$

$$\lambda^* = argmax_{\lambda_i} P(O|\lambda_i)$$

 Problema: Achar um novo modelo a partir do existente que maximize (localmente) a probabilidade de se obter uma sequência observada

$$P(O|\bar{\lambda}) > P(O|\lambda)$$

Mais uma variável:

$$\gamma_t(i) = P(X_t = i | O, \lambda) = \alpha_t(i)\beta_t(i)/P(O|\lambda)$$

Mais uma variável:

$$\gamma_t(i) = P(X_t = i | O, \lambda) = \alpha_t(i)\beta_t(i)/P(O|\lambda)$$

Mas o que ela representa?

$$\sum_{t=1}^{T-1} \gamma_t(i)$$

Mais outra variável:

$$\xi_t(i,j) = P(X_t = i, X_{t+1} = j | O, \lambda)$$

= $\alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j) / P(O | \lambda)$

Mais outra variável:

$$\xi_t(i,j) = P(X_t = i, X_{t+1} = j | O, \lambda)$$

= $\alpha_t(i) a_{ij} b_j(O_{t+1}) \beta_{t+1}(j) / P(O | \lambda)$

Mas o que ela representa?

$$\sum_{t=1}^{T-1} \xi_t(i,j)$$

Solução:

$$\overline{\pi_i} = \gamma_1(i)$$

$$\overline{a_{ij}} = \sum_{t=1}^{T-1} \xi_t(i,j) / \sum_{t=1}^{T-1} \gamma_t(i)$$

$$\overline{b_j(k)} = \sum_{t=1,O_t=k}^T \gamma_t(j) / \sum_{t=1}^T \gamma_t(j)$$

Solução:

$$\overline{\pi_i} = \gamma_1(i)$$

$$\overline{a_{ij}} = \sum_{t=1}^{T-1} \xi_t(i,j) / \sum_{t=1}^{T-1} \gamma_t(i)$$

$$\overline{b_j(k)} = \sum_{t=1,O_t=k}^T \gamma_t(j) / \sum_{t=1}^T \gamma_t(j)$$

• Complexidade por iteração: $O(N^2T)$

HMM

Problemas resolvidos

HMM

Problemas resolvidos

Underflow!

HMM

- Problemas resolvidos
- Underflow!
 - Escalar probabilidades
 - Usar valor do logaritmo

HMM

- Problemas resolvidos
- Underflow!
 - Escalar probabilidades
 - Usar valor do logaritmo
- Treinamento adequado exige múltiplas observações!

Considerações Finais

Testes Realizados

- 4 pessoas
- 4 gestos
- 160 execuções de gesto
 - 8o para treinamento
 - 8o para reconhecimento

Testes Realizados

- Diferentes módulos
 - Inicialização do quantizador
 - Extratores
 - Níveis de filtragem
 - HMM
 - Topologia
 - Número de estados
 - Número de símbolos

Conclusão

- Variação da porcentagem de acerto
- Necessidade de grande conjunto de teste
- Escolha dos melhores parâmetros

Referências

- L. R. Rabiner. A tutorial on hidden markov models and selected applications in speech recognition. *Proceedings of the IEEE*, 77(2):257-286, 1989.
- VM. Mantyla. Discrete hidden markov models with application to isolated user-dependent hand gesture recognition. VTT publications, 2001.

Perguntas

