Caminhos mais longos em um grafo

Susanna Figueiredo de Rezende

Orientadora: Yoshiko Wakabayashi

Instituto de Matemática e Estatística Universidade de São Paulo

15 de novembro de 2011

- PRELIMINARES
- 2 O PROBLEMA DO CAMINHO MAIS LONGO
- 3 Interseção de caminhos mais longos
- UM NOVO RESULTADO
- **6** Conclusões

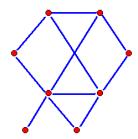
Grafos

- G = (V, E)
- V: Vértices
- E: Arestas (pares n\u00e3o ordenados de v\u00e9rtices)

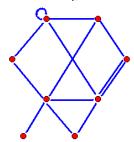
- \bullet G=(V,E)
- V: Vértices
- E: Arestas (pares não ordenados de vértices)

- G = (V, E)
- V: Vértices
- E: Arestas (pares não ordenados de vértices)
 - •
 - - •
 - •

- G = (V, E)
- V: Vértices
- E: Arestas (pares não ordenados de vértices)

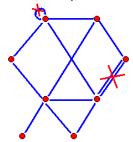


- G = (V, E)
- V: Vértices
- E: Arestas (pares não ordenados de vértices)

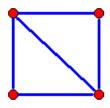


Grafos

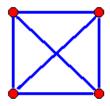
- G = (V, E)
- V: Vértices
- E: Arestas (pares não ordenados de vértices)



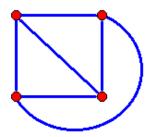
- Planar



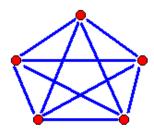
- Planar
- Não-planar



- Planar
- Não-planar



- Planar
- Não-planar

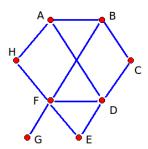


Caminhos

- P: Caminho
 - Sequência de vértices (e arestas) distintos

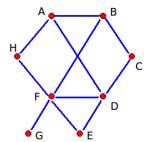
Caminhos

- P: Caminho
 - Sequência de vértices (e arestas) distintos



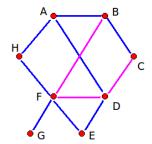
CAMINHOS

- P: Caminho
 - Sequência de vértices (e arestas) distintos
 - Exemplo: C-D-F-B
 - Comprimento: 3
 - Não é caminho: C-D-F-B-A-H-F-E



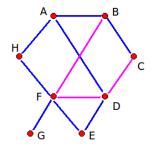
Caminhos

- P: Caminho
 - Sequência de vértices (e arestas) distintos
 - Exemplo: C-D-F-B
 - Comprimento: 3
 - Não é caminho: C-D-F-B-A-H-F-E



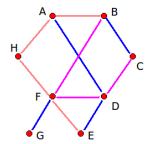
CAMINHOS

- P: Caminho
 - Sequência de vértices (e arestas) distintos
 - Exemplo: C-D-F-B
 - Comprimento: 3
 - Não é caminho: C-D-F-B-A-H-F-E



Caminhos

- P: Caminho
 - Sequência de vértices (e arestas) distintos
 - Exemplo: C-D-F-B
 - Comprimento: 3
 - Não é caminho: C-D-F-B-A-H-F-E



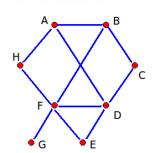
CAMINHO

C: Circuito

- Sequência de vértices (e arestas) distintos exceto nas extremidades
- Exemplo: C-D-F-B-I

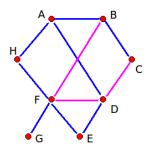
CAMINHO

- C: Circuito
 - Sequência de vértices (e arestas) distintos exceto nas extremidades
 - Exemplo: C-D-F-B-C



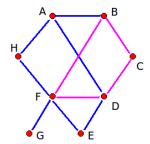
Caminho

- C: Circuito
 - Sequência de vértices (e arestas) distintos exceto nas extremidades
 - Exemplo: C-D-F-B-C



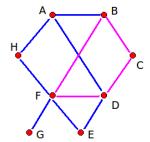
CAMINHO

- C: Circuito
 - Sequência de vértices (e arestas) distintos exceto nas extremidades
 - Exemplo: C-D-F-B-C
 - Comprimento: 4



Caminho

- C: Circuito
 - Sequência de vértices (e arestas) distintos exceto nas extremidades
 - Exemplo: C-D-F-B-C
 - Comprimento: 4



- Encontrar caminho mais curto
- Encontrar caminho mais longo

- Encontrar caminho mais curto
- Encontrar caminho mais longo

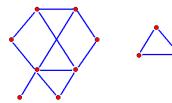
- Encontrar caminho mais curto
- Encontrar caminho mais longo

- Encontrar caminho mais curto
- Encontrar caminho mais longo

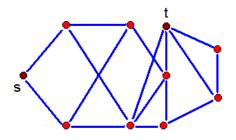
Grafos conexos

- Encontrar caminho mais curto
- Encontrar caminho mais longo

Grafo não-conexo:

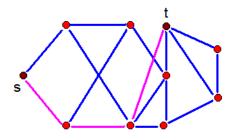


Encontrar caminho mais curto:



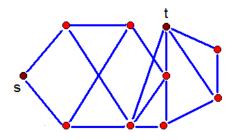
- Dificuldade
- Prova

Encontrar caminho mais curto:



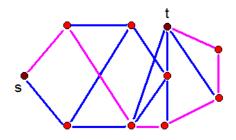
- Dificuldade
- Prova

• Encontrar caminho mais longo:



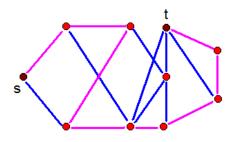
- Dificuldade
- Prova

• Encontrar caminho mais longo:



- Dificuldade
- Prova

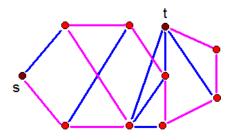
• Encontrar caminho mais longo:



- Dificuldade
- Prova

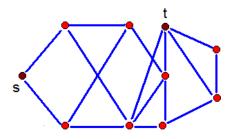
DIFICULDADE

Encontrar caminho mais longo:



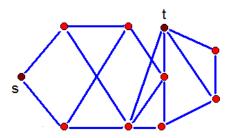
- Dificuldade
- Prova

• Mais curto vs. mais longo



- Dificuldade
- Prova

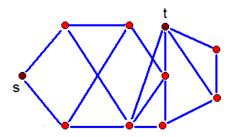
• Mais curto vs. mais longo



- Dificuldade
- Prova

DIFICULDADE

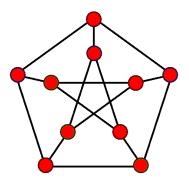
Mais curto vs. mais longo



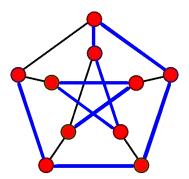
- Dificuldade
- Prova

- Caminho Hamiltoniano
- Biologia Computacional
- PERT: Program Evaluation and Review Technique

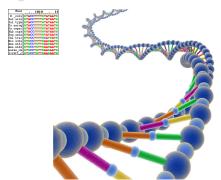
- Caminho Hamiltoniano
- Biologia Computacional
- PERT: Program Evaluation and Review Technique



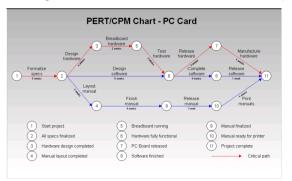
- Caminho Hamiltoniano
- Biologia Computacional
- PERT: Program Evaluation and Review Technique



- Caminho Hamiltoniano
- Biologia Computacional
- PERT: Program Evaluation and Review Technique



- Caminho Hamiltoniano
- Biologia Computacional
- PERT: Program Evaluation and Review Technique



PROBLEMA

- NP-difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais:

PROBLEMA

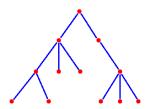
- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais:

PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais:

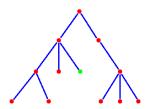
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais: Árvores (Dijkstra '60)



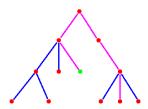
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais: Árvores (Dijkstra '60)



PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais: Árvores (Dijkstra '60)



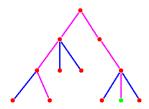
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais: Árvores (Dijkstra '60)



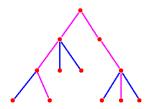
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais: Árvores (Dijkstra '60)



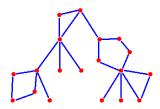
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais: Árvores (Dijkstra '60)



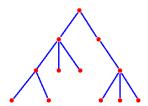
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais:
 Cactus (Uehara e Uno '05)



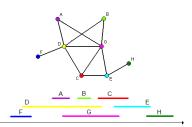
PROBLEMA

- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais:
 Cactus (Uehara e Uno '05)

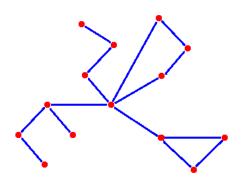


PROBLEMA

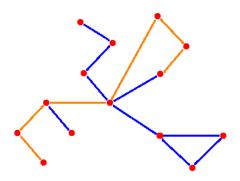
- \mathcal{NP} -difícil para grafos arbitrários.
- Para algumas classes específicas de grafos existem algoritmos polinomiais:
 Grafos de intervalo (loannidou e outros '10)



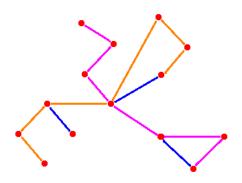
Encontrar caminhos mais longos distintos:



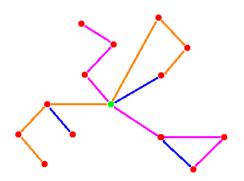
Encontrar caminhos mais longos distintos:



Encontrar caminhos mais longos distintos:



Encontrar caminhos mais longos distintos:



Sempre acontece?

Asserção

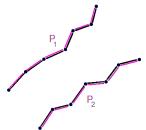
Quaisquer 2 caminhos mais longos se intersectam.

Asserção

Quaisquer 2 caminhos mais longos se intersectam.

 P_1 e P_2 : caminhos mais longos

M: caminho (mínimo) que liga P_1 a P_2

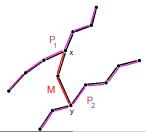


Asserção

Quaisquer 2 caminhos mais longos se intersectam.

 P_1 e P_2 : caminhos mais longos

M: caminho (mínimo) que liga P_1 a P_2



Asserção

Quaisquer 2 caminhos mais longos se intersectam.

 P_1' : maior segmento de P_1

 P_2' : maior segmento de P_2

Asserção

Quaisquer 2 caminhos mais longos se intersectam.

$$P = P'_1 \cdot M \cdot P'_2$$

 $||P|| \ge ||P1|| + ||M||$

- Para 2 é verdade.
- E para...

- Para 2 é verdade.
- E para...

- Para 2 é verdade.
- E para...

Fonte: www.lunchoverip.com

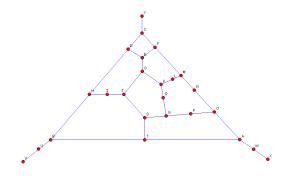
INTERSEÇÃO DE CAMINHOS MAIS LONGOS Gallai ('66):

PROBLEMA \mathcal{P}_{∞}

Para qualquer grafo G, existe sempre um vértice comum a todos os caminhos mais longos?

PRIMEIRO EXEMPLO

- Walther ('69)
- 25 vértices
- 13 caminhos



PERGUNTAS

Novas perguntas, Zamfirescu ('72):

- Este exemplo é minimal?
- E com restrições (planaridade, maior conectividade)?
- Para que classes de grafos a propriedade é verdade?
- E a intersecção de apenas alguns caminhos mais longos?

PERGUNTAS

Novas perguntas, Zamfirescu ('72):

- Este exemplo é minimal?
- E com restrições (planaridade, maior conectividade)?
- Para que classes de grafos a propriedade é verdade?
- E a intersecção de apenas alguns caminhos mais longos?

PERGUNTAS

Novas perguntas, Zamfirescu ('72):

- Este exemplo é minimal?
- E com restrições (planaridade, maior conectividade)?
- Para que classes de grafos a propriedade é verdade?
- E a intersecção de apenas alguns caminhos mais longos?

PERGUNTAS

Novas perguntas, Zamfirescu ('72):

- Este exemplo é minimal?
- E com restrições (planaridade, maior conectividade)?
- Para que classes de grafos a propriedade é verdade?
- E a intersecção de apenas alguns caminhos mais longos?

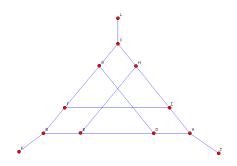
PERGUNTAS

Novas perguntas, Zamfirescu ('72):

- Este exemplo é minimal?
- E com restrições (planaridade, maior conectividade)?
- Para que classes de grafos a propriedade é verdade?
- E a intersecção de apenas alguns caminhos mais longos?

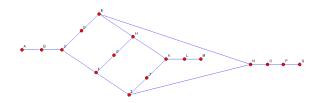
EXEMPLO MINIMAL

- Walther e Zamfirescu
- Apenas 12 vértices
- 9 caminhos



EXEMPLO MINIMAL PLANAR

- Schmitz ('75)
- 17 vértices
- Planar
- 7 caminhos



Classes especiais de grafos

Árvores

Grafos arco-circulares - Balister e outros '04

Classes especiais de grafos

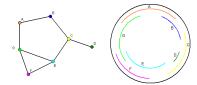
Árvores

Grafos arco-circulares - Balister e outros '04

Classes especiais de grafos

Árvores

• Grafos arco-circulares - Balister e outros '04



Em aberto:

PROBLEMA

Existe um vértice comum a quaisquer três caminhos mais longos em G?

Em aberto:

PROBLEMA

Existe um vértice comum a quaisquer três caminhos mais longos em G?

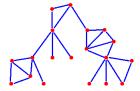
Axenovich ('09): Grafos Exoplanares

Em aberto:

PROBLEMA

Existe um vértice comum a quaisquer três caminhos mais longos em G?

Axenovich ('09): Grafos Exoplanares

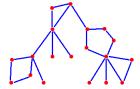


Em aberto:

PROBLEMA

Existe um vértice comum a quaisquer três caminhos mais longos em G?

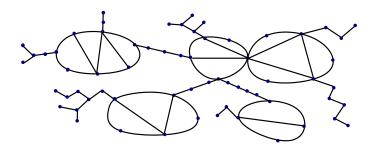
Axenovich ('09): Grafos Exoplanares



Um novo resultado

TEOREMA

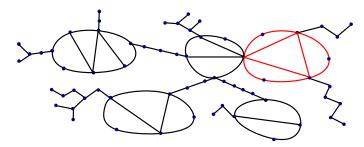
Se G é exoplanar, então existe um vértice comum a **todos** os caminhos mais longos.

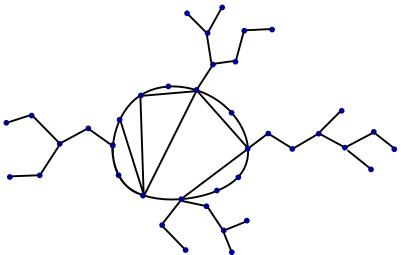


Prova

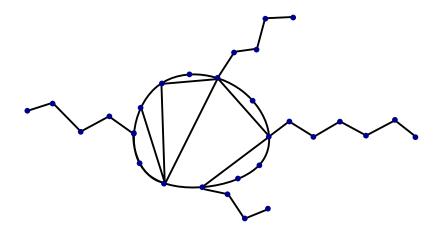
Proposição - Klavžar e Petkovšek ('90)

Existe um vértice comum a todos os caminhos mais longos em $G \Leftrightarrow para$ todo bloco B de G, todos os caminhos mais longos que têm pelo menos uma aresta em B têm um vértice em comum.

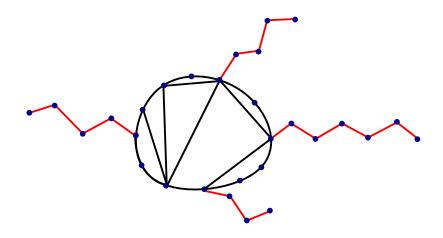


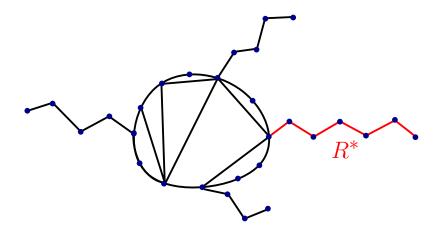


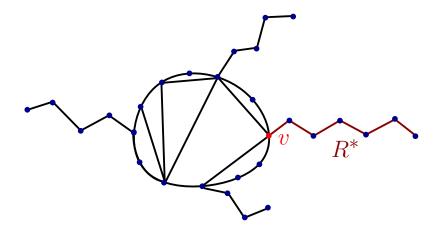
Prova



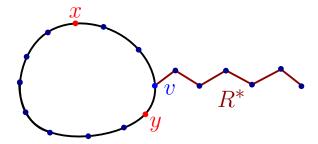
Prova

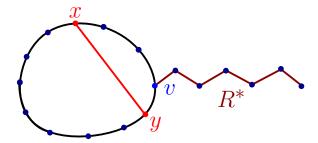


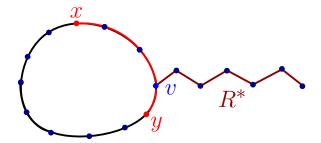


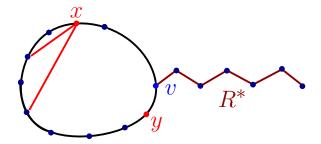


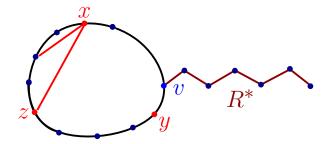


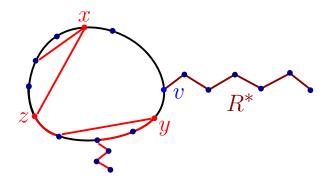


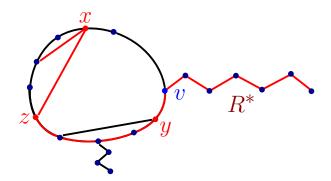












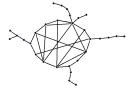
- Artigo Axenovich '09
- Resultado mais geral apresentado
- Outro resultado mais geral

- Problemas em aberto
- "Gap" muito grande (2 a 7)

- Artigo Axenovich '09
- Resultado mais geral apresentado
- Outro resultado mais geral

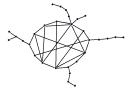
- Problemas em aberto
- "Gap" muito grande (2 a 7)

- Artigo Axenovich '09
- Resultado mais geral apresentado
- Outro resultado mais geral



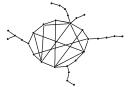
- Problemas em aberto
- "Gap" muito grande (2 a 7)

- Artigo Axenovich '09
- Resultado mais geral apresentado
- Outro resultado mais geral



- Problemas em aberto
- "Gap" muito grande (2 a 7)

- Artigo Axenovich '09
- Resultado mais geral apresentado
- Outro resultado mais geral



- Problemas em aberto
- "Gap" muito grande (2 a 7)

Preliminares
O problema do caminho mais longo
Întersecção de caminhos mais longos
Úm novo resultado
Conclusões

Obrigada!

