
Analysis of Scheduling Algorithms on a Parallel Programming

Context
Student: Peter Ngugi Nyumu

Supervisor: Prof. Afredo Goldman

Institute of Mathematics and Statistics
University of São Paulo

pnyumu@linux.ime.usp.br

1. Introduction

In this working we define diferent kind of
computing, and study diferent kind of al-
gorithms, analysing them in the context
of parallel computing. The tasks are pro-
cessed in sequential form.

2. The Operating System Scheduler

An operating system (OS) is an interface
between hardware and user which is re-
sponsible for the management and coor-
dination of activities and the sharing of the
resources of the computer that acts as a
host for computing applications run on the
machine. This interface uses diferent types
of algorithms.

2.1 First Come First Served Algo-
rithm

2.2 Priority Queue Algorithm

2.3 Weighted Fair Queue Algo-
rithm

Other algorithms include;
• Round robin

• weighted round robin

• Fair Queueing

• Start-time fair queuing

• Self-clocked fair queing

• Surplus Round robin

• Gang algorithm

• Credit based fair

3. Parallel Computing

Parallel computing is a form of computa-
tion in which many calculations are car-
ried out simultaneously, operating on the
principle that large problems can often be
divided into smaller ones, which are then
solved concurrently (”in parallel”). Work-
stealing algorithm is an algorithm used
with Cilk and Kaapi scheduler in Parallel
computing.

3.1 Work-Stealing Algorithm

4. Cluster Computing

A computer cluster is a group of linked
computers, working together closely so
that in many respects they form a single
computer.

5. Grid Computing

Grid computing is applying the resources
of many computers in a network to a sin-
gle problem at the same time, usually to a
scientific or technical problem that requires
a great number of computer processing cy-
cles or access to large amounts of data.

5.1 Taxonomy in Grid Computing

5.2 Master/Slave grid computing
In such applications, a single master pro-
cess controls the distribution of work to
a set of identically operating slave pro-
cesses. In evaluating Master-Slave appli-
cations, two performance measures of par-
ticular interest are speedup and efficiency.
In general, the performance of master-
slave applications will depend on the tem-
poral characteristics of the tasks as well as
on the dynamic allocation and scheduling
of processors to the application.

Operating system algorithms are adapted
to work in Master-Slave applications.
In heterogeneous set, non-preemption
matches well with master-slave applica-
tions because slaves are independent and
consequently don’t need to be running si-
multaneously.


