Gerenciamento de Recursos para Grades Computacionais Node Control Center

Carlos Eduardo Moreira dos Santos Orientador: Fabio Kon

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo

Trabalho de Formatura Supervisionado, 2009

Visão Geral

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

- Um dos projetos oficiais do CCSL
- Financiado pelo CNPq
- Middleware para grades computacionais oportunistas
- Soma recursos
- Comunicação entre processos
- Consome a ociosidade de computadores
- Máquinas dedicadas

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

Objetivo

- Minimizar impacto de aplicações da grade nos nós
- Possibilidade de o usuário limitar recursos compartilhados
- Interface descomplicada para leigos

Objetivo

- Minimizar impacto de aplicações da grade nos nós
- Possibilidade de o usuário limitar recursos compartilhados
- Interface descomplicada para leigos

Objetivo

- Minimizar impacto de aplicações da grade nos nós
- Possibilidade de o usuário limitar recursos compartilhados
- Interface descomplicada para leigos

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

- Integrantes do Projeto InteGrade na PUC-Rio
- Limita o uso de CPU em nível de usuário
 - Sem a sobrecarga das máquinas virtuais
 - Não é necessário alterar o kernel
- Escrito em C, é leve e eficiente

- Integrantes do Projeto InteGrade na PUC-Rio
- Limita o uso de CPU em nível de usuário
 - Sem a sobrecarga das máquinas virtuais
 - Não é necessário alterar o kernel
- Escrito em C, é leve e eficiente

- Integrantes do Projeto InteGrade na PUC-Rio
- Limita o uso de CPU em nível de usuário
 - Sem a sobrecarga das máquinas virtuais
 - Não é necessário alterar o kernel
- Escrito em C, é leve e eficiente

- Integrantes do Projeto InteGrade na PUC-Rio
- Limita o uso de CPU em nível de usuário
 - Sem a sobrecarga das máquinas virtuais
 - Não é necessário alterar o kernel
- Escrito em C, é leve e eficiente

- Integrantes do Projeto InteGrade na PUC-Rio
- Limita o uso de CPU em nível de usuário
 - Sem a sobrecarga das máquinas virtuais
 - Não é necessário alterar o kernel
- Escrito em C, é leve e eficiente

CPUReserve - Funcionamento

- Tempo de execução obtido em /proc
- kill(pid_t pid, SIGSTOP)
- kill(pid_t pid, SIGCONT)
- sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask)

CPUReserve - Funcionamento

- Tempo de execução obtido em /proc
- kill(pid_t pid, SIGSTOP)
- kill(pid_t pid, SIGCONT)
- sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask)

CPUReserve - Funcionamento

- Tempo de execução obtido em /proc
- kill(pid_t pid, SIGSTOP)
- kill(pid_t pid, SIGCONT)
- sched_getaffinity(pid_t pid, size_t cpusetsize, cpu_set_t *mask)

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

- Não há mais necessidade de ser root
 - Sem garantia no tempo de execução mínimo
 - Facilidade de instalação
 - Segurança
- Mudança do limite enquanto em execução
- Tempo de execução calculado totalmente no servidor, com testes
- Status informando programas e limites
- Suporte a múltiplos núcleos

Exemplo

Dado que o computador possui 4 núcleos e que o usuário limitou a CPU em 60%, como dividir 1000 ms entre as aplicações abaixo?

Aplicação	Tasks
а	2
b	1
С	3

- Ideal = $(1000 \times limite) \times min(Tasks, núcleos)$
- **Disponível** = $(1000 \times limite) \times núcleos utilizados$
- PorAplicação = Disponível aplicações restantes
- Fornecido = min(Ideal, PorAplicação)

- **Ideal** = $(1000 \times limite) \times min(Tasks, núcleos)$
- **Disponível** = $(1000 \times limite) \times núcleos utilizados$
- ullet PorAplicação $= rac{ extsf{Disponível}}{ ext{aplicações restantes}}$
- Fornecido = min(Ideal, PorAplicação)

- **Ideal** = $(1000 \times limite) \times min(Tasks, núcleos)$
- **Disponível** = $(1000 \times limite) \times núcleos utilizados$
- PorAplicação = Disponível aplicações restantes
- Fornecido = min(Ideal, PorAplicação)

- **Ideal** = $(1000 \times limite) \times min(Tasks, núcleos)$
- **Disponível** = $(1000 \times limite) \times núcleos utilizados$
- PorAplicação = Disponível aplicações restantes
- Fornecido = min(Ideal, PorAplicação)

Definições (tempos)

- **Ideal** = $(1000 \times limite) \times min(Tasks, núcleos)$
- **Disponível** = $(1000 \times limite) \times núcleos utilizados$
- PorAplicação = Disponível aplicações restantes
- Fornecido = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
а	2				
b	1				
С	5				

- Ordenar por Tasks
- 2 Ideal = $600 \times \min(Tasks, 4)$
- 3 Laço
 - **Output** Disponível = 600×4 utilizados
 - Poraplicação = aplicações restantes
 - Fornecido = min(ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1				
а	2				
С	5				

- Ordenar por Tasks
- 2 Ideal = $600 \times \min(Tasks, 4)$
- 3 Laço
 - **Disponível** = 600×4 utilizados
 - aplicação = aplicações restantes
 - Fornecido = min(ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1				
а	2				
С	5				

- Ordenar por *Tasks*
- 2 Ideal = $600 \times min(Tasks, 4)$
- 3 Laço
 - Disponivel = 600 × 4 utilizados
 Disponivel
 - 2 Poraplicação = aplicações restantes
 - Fornecido = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600			
а	2				
С	5				

- Ordenar por *Tasks*
- 2 Ideal = $600 \times min(Tasks, 4)$
- 3 Laço
 - Disponível = 600 × 4 utilizados
 Disponível
 - 2 PorAplicação = aplicações restantes
 - Fornecido = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600			
а	2	1200			
С	5				

- Ordenar por *Tasks*
- 2 Ideal = $600 \times min(Tasks, 4)$
- 3 Laço
 - Disponível = 600 × 4 utilizados
 Disponível
 - 2 Poraplicação = aplicações restantes
 - Fornecido = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600			
а	2	1200			
С	5	2400			

- Ordenar por *Tasks*
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço
 - Disponível = 600 × 4 utilizados
 Disponível
 - PorAplicação = aplicações restantes
 - Fornecido = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600			
а	2	1200			
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400		
а	2	1200			
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400		
а	2	1200			
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	
а	2	1200			
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	
а	2	1200			
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes
 - Section = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	600
а	2	1200			
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes
 - Section = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	600
а	2	1200	1800		
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes
 - Section = min(Ideal, PorAplicação)

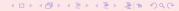
Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	600
а	2	1200	1800	900	
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes
 - Section = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	600
а	2	1200	1800	900	900
С	5	2400			

- Ordenar por Tasks
- 2 Ideal = $600 \times \min(Tasks, 4)$
- Laço


 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes
 - Section = min(Ideal, PorAplicação)

Aplicação	Tasks	Ideal	Disp.	PorApl.	Fornecido
b	1	600	2400	800	600
а	2	1200	1800	900	900
С	5	2400			900

- Ordenar por Tasks
- 2 Ideal = $600 \times min(Tasks, 4)$
- Laço

 - Disponível = 600 × 4 utilizados
 PorAplicação = Disponível aplicações restantes
 - Section = min(Ideal, PorAplicação)

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog argl...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 (2² + 2³) 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog argl...argn
- Adaptação:
 - adapt $127.0.0.1:8000\ 12(2^2+2^3)75$
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:

```
• server 8000 50
```

Oliente:

• client 127.0.0.1:8000 prog arg1...argn

Adaptação:

```
• adapt 127.0.0.1:8000\ 12(2^2+2^3)75
```

Status:

• adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog arg1...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 $(2^2 + 2^3)$ 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:

```
• client 127.0.0.1:8000 prog argl...argn
```

- Adaptação:
 - adapt 127.0.0.1:8000 12 (**2**² + **2**³) 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog arg1...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 (**2**² + **2**³) 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog arg1...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 $(2^2 + 2^3)$ 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog arg1...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 $(2^2 + 2^3)$ 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog arg1...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 $(2^2 + 2^3)$ 75
- Status:
 - adapt 127.0.0.1:8000 status

- Pode ser usado sem o InteGrade
- Disponível em http://launchpad.net/cpureserve
- Servidor:
 - server 8000 50
- Oliente:
 - client 127.0.0.1:8000 prog arg1...argn
- Adaptação:
 - adapt 127.0.0.1:8000 12 $(2^2 + 2^3)$ 75
- Status:
 - adapt 127.0.0.1:8000 status

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Acceptation de la Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

- Escrito para MAC 413/5715, 2003
- Linguagem C++
- Templates apenas com variáveis a serem substituídas
- Consome pouca memória do nó (menos de 2 MB)
- Multiplataforma (sockets)

- Escrito para MAC 413/5715, 2003
- Linguagem C++
- Templates apenas com variáveis a serem substituídas
- Consome pouca memória do nó (menos de 2 MB)
- Multiplataforma (sockets)

- Escrito para MAC 413/5715, 2003
- Linguagem C++
- Templates apenas com variáveis a serem substituídas
- Consome pouca memória do nó (menos de 2 MB)
- Multiplataforma (sockets)

- Escrito para MAC 413/5715, 2003
- Linguagem C++
- Templates apenas com variáveis a serem substituídas
- Consome pouca memória do nó (menos de 2 MB)
- Multiplataforma (sockets)

- Escrito para MAC 413/5715, 2003
- Linguagem C++
- Templates apenas com variáveis a serem substituídas
- Consome pouca memória do nó (menos de 2 MB)
- Multiplataforma (sockets)

NCC - Alterações

Antes

- Método extenso para substituição de variáveis
- Valores de variáveis explícitos no código
- Após
 - Comunicação com CPUReserve (status e adapt)
 - Substituição de variáveis orientada a objetos

NCC - Alterações

- Antes
 - Método extenso para substituição de variáveis
 - Valores de variáveis explícitos no código
- Após
 - Comunicação com CPUReserve (status e adapt)
 - Substituição de variáveis orientada a objetos

NCC - Alterações

- Antes
 - Método extenso para substituição de variáveis
 - Valores de variáveis explícitos no código
- Após
 - Comunicação com CPUReserve (status e adapt)
 - Substituição de variáveis orientada a objetos

NCC - Alterações

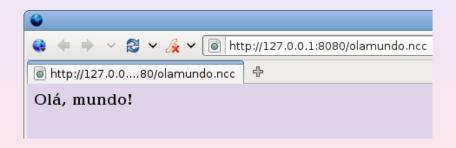
- Antes
 - Método extenso para substituição de variáveis
 - Valores de variáveis explícitos no código
- Após
 - Comunicação com CPUReserve (status e adapt)
 - Substituição de variáveis orientada a objetos

NCC - Alterações

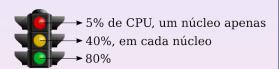
- Antes
 - Método extenso para substituição de variáveis
 - Valores de variáveis explícitos no código
- Após
 - Comunicação com CPUReserve (status e adapt)
 - Substituição de variáveis orientada a objetos

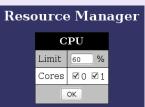
NCC - Alterações

- Antes
 - Método extenso para substituição de variáveis
 - Valores de variáveis explícitos no código
- Após
 - Comunicação com CPUReserve (status e adapt)
 - Substituição de variáveis orientada a objetos


```
olamundo.ncc
```

```
OlaMundo.cpp
```


```
class OlaMundo : public WebPage {
    public:
        OlaMundo(string tpl): WebPage(tpl){}
    private:
        void generateVars() {
            setVar("MENSAGEM", "Olá, mundo!");
        }
};
```


```
ncc.cpp
```

```
//...
else if (strcmp(file, "olamundo.ncc") == 0) {
    OlaMundo pagina(tpl);
    tpl = pagina.getPage();
}
//
```


NCC - Resultado

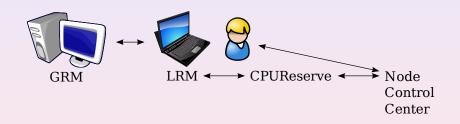
Processes & Resource Usage					
Application #	Process ID	Name	CPU (%)	Memory (kB)	Action
1	26293	matrix	30	380	Migrate
2	26310	gridCalc	15	388	Migrate
	26311	gridCalc	15	164	Migrate

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

InteGrade LRM

- Nós executam o Local Resource Manager (LRM)
- LRM utiliza fork e execv
- Chamada ao programa da grade foi prefixada


InteGrade LRM

- Nós executam o Local Resource Manager (LRM)
- LRM utiliza fork e execv
- Chamada ao programa da grade foi prefixada

InteGrade LRM

- Nós executam o Local Resource Manager (LRM)
- LRM utiliza fork e execv
- Chamada ao programa da grade foi prefixada

Relacionamento entre os Programas

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

- Vantagens
 - TI Verde
 - Economia de energia
 - Menos calor gerado
 - Economia com refrigeração
 - Maior autonomia de baterias
 - Menos ruído para refrigeração
 - Mais nós voluntários
- Desvantagens
 - Menor quantidade de CPU disponível para a grade?
 - Perda de desempenho para o usuário local?

Casos

- Sem aplicações da grade
- Uma aplicação com um processo e outra com dois a 20%
- Uma aplicação com um processo e outra com dois a 90%

	Média	Desvio Padrão
1	8,65	1,35
2	8,43	0,94
3	8,17	1,56

Casos

- Sem aplicações da grade
- Uma aplicação com um processo e outra com dois a 20%
- Uma aplicação com um processo e outra com dois a 90%

	Média	Desvio Padrão
1	8,65	1,35
2	8,43	0,94
3	8,17	1,56

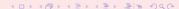
Casos

- Sem aplicações da grade
- Uma aplicação com um processo e outra com dois a 20%
- Uma aplicação com um processo e outra com dois a 90%

	Média	Desvio Padrão
1	8,65	1,35
2	8,43	0,94
3	8,17	1,56

Casos

- Sem aplicações da grade
- Uma aplicação com um processo e outra com dois a 20%
- Uma aplicação com um processo e outra com dois a 90%


	Média	Desvio Padrão
1	8,65	1,35
2	8,43	0,94
3	8,17	1,56

		Média	Desvio Padrão
_	1	18,28	1,50
	2	18,72	0,68
	3	18,86	0,90

Tabela: Tempo para carregar Openoffice

Tópicos

- Introdução
 - InteGrade
 - Objetivo
- Programas Utilizados
 - CPUReserve
 - NCC
 - InteGrade LRM
- Integração
- Resultados e Contribuições
 - Limitação de CPU
 - InteGrade

InteGrade

- Maior facilidade para limitação de mais recursos
- Melhor organização, separando os projetos

InteGrade

- Maior facilidade para limitação de mais recursos
- Melhor organização, separando os projetos

Links

- Página oficial do Projeto InteGrade
 - http://www.integrade.org.br
- Página oficial do CPUReserve
 - https://mwlab.tecgraf.puc-rio.br/MWLab/ projects/cpureserve
- Downloads e repositórios dos códigos deste trabalho
 - https://launchpad.net/integrade
 - https://launchpad.net/cpureserve
 - https://launchpad.net/ncc

Artigos I

InteGrade: Um Sistema de Middleware para Computação em Grade Oportunista

Dissertação de mestrado na área de Ciência da Computação. IME-USP, 2004.

Reis, Valéria Q. e Cerqueira, Renato F. G. A tool for isolating performance in general-purpose operating systems

MGC '08: Proceedings of the 6th international workshop on Middleware for grid computing, 2008.

Apêndice

Artigos II

Luz, Giulian D., Rogério e Santos, Guaraci Interface para o NCC

MAC 413/5715 - Tópicos (Avançados) de Programação Orientada a Objetos, IME-USP, 2003.