ExpressMath: Análise estrutural de expressões matemáticas manuscritas

Bruno Yoiti Ozahata, Ricardo Sider Nina S. T. Hirata (orientadora)

Departamento de Ciência da Computação Instituto de Matemática e Estatística Universidade de São Paulo 16 de novembro de 2009

Trabalho apoiado pelo CNPq

Motivação

Motivação

Problema

Dada uma expressão matemática manuscrita, como convertê-la para um formato digital?

Motivação

Problema

Dada uma expressão matemática manuscrita, como convertê-la para um formato digital?

Solução

ExpressMath: Reconhecimento de expressões matemáticas manuscritas

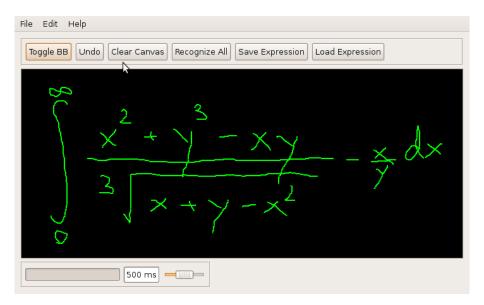
Reconhecimento de expressões matemáticas

O Reconhecimento de expressões matemáticas pode ser dividido em duas etapas:

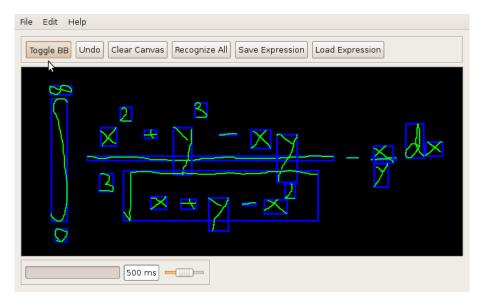
- Segmentação e reconhecimento dos símbolos
- Análise estrutural

Reconhecimento de expressões matemáticas

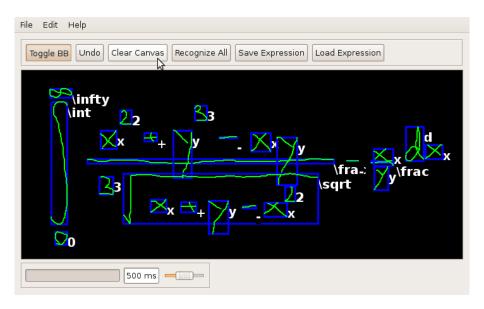
O Reconhecimento de expressões matemáticas pode ser dividido em duas etapas:


- Segmentação e reconhecimento dos símbolos
- Análise estrutural

Reconhecimento de expressões matemáticas


O Reconhecimento de expressões matemáticas pode ser dividido em duas etapas:

- Segmentação e reconhecimento dos símbolos
- Análise estrutural


Exemplo de entrada

Segmentação dos símbolos

Reconhecimento dos símbolos

Análise estrutural

Saída do programa

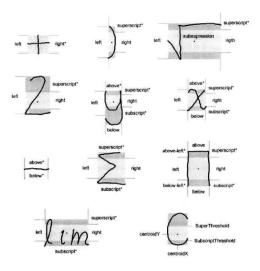
Fórmula LATEX

$$\int_0^\infty \frac{x^2 + y^3 - xy}{\sqrt[3]{x + y - x^2}} - \frac{x}{y} dx$$

Análise estrutural

- A análise estrutural objetiva determinar o conjunto das relações espaciais que um símbolo exerce em relação a outro.
- Utilizamos os conceitos de baseline e árvore geradora mínima para determinar a estrutura de uma expressão matemática.

(baseado em um trabalho de Tapia e Rojas, de 2004)


Conceitos

Regiões dos símbolos

Um símbolo pode ter as seguintes **posições relativas** em relação ao outro:

- Acima
- Abaixo
- Superscript
- Subscript
- Direita
- Abaixo e à esquerda
- Abaixo e à direita
- Sub-expressão

Regiões dos símbolos

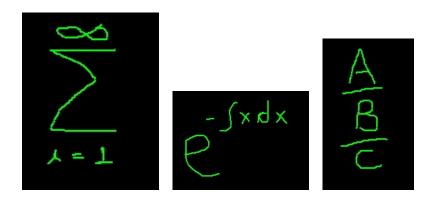
Fonte: (TAPIA, 2004)

Abrangência

Abrangência

Definição

A **abrangência** de um símbolo é a área onde esperamos encontrar os seus atributos.


Dominância

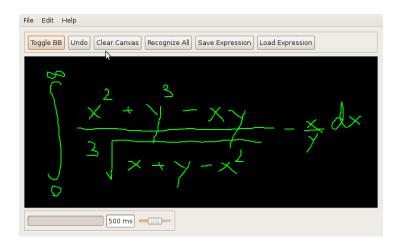
Dominância

Definição

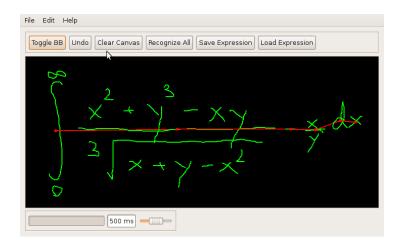
Um símbolo a **domina** sobre outro símbolo b, se b está na área de abrangência de a, e a não está na área de abrangência de b.

Exemplos

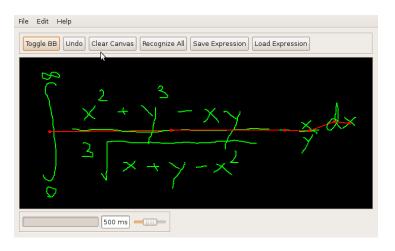
Expressões em que


- Dominância é determinada pela abrangência.
- Dominância é determinada pelo **tamanho**.
- É difícil determinar a dominância dos operadores.

Baseline


Definição

Uma **baseline** é uma lista ordenada de símbolos, que representa um arranjo horizontal na expressão.


Exemplo de baseline

Exemplo de baseline

Exemplo de baseline

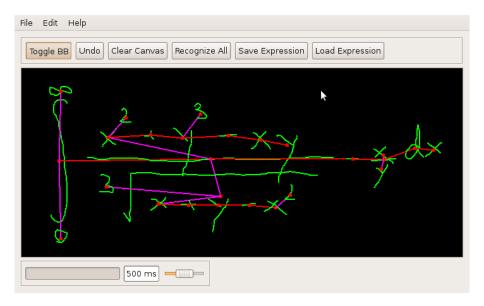
Baseline: \int , barra de divisão, -, barra de divisão, $d \in x$.

Árvore geradora mínima

Definição

Uma **árvore geradora mínima** de um grafo com pesos nas arestas é um subconjunto das mesmas, de modo que todos os vértices possam ser atingidos por meio dela e a soma dos pesos de suas arestas é mínimo.

- Oeterminar baseline principal
- Calcular a árvore geradora mínima
- Construir listas com os filhos dos símbolos na baseline principal, rotuladas com a relação espacial que satisfazem com ele
- Aplicar a recursão para cada uma das listas não-vazias


- Determinar baseline principal
- Calcular a árvore geradora mínima
- Construir listas com os filhos dos símbolos na baseline principal, rotuladas com a relação espacial que satisfazem com ele
- Aplicar a recursão para cada uma das listas não-vazias

- Determinar baseline principal
- Calcular a árvore geradora mínima
- Construir listas com os filhos dos símbolos na baseline principal, rotuladas com a relação espacial que satisfazem com ele
- Aplicar a recursão para cada uma das listas não-vazias

- Determinar baseline principal
- Calcular a árvore geradora mínima
- Construir listas com os filhos dos símbolos na baseline principal, rotuladas com a relação espacial que satisfazem com ele
- Aplicar a recursão para cada uma das listas não-vazias

- Determinar baseline principal
- Calcular a árvore geradora mínima
- Construir listas com os filhos dos símbolos na baseline principal, rotuladas com a relação espacial que satisfazem com ele
- Aplicar a recursão para cada uma das listas não-vazias

Análise estrutural

• Reconhecimento de expressões tabulares:

- Reconhecimento de expressões tabulares:
 - Matrizes

- Reconhecimento de expressões tabulares:
 - Matrizes
 - Definição de função

- Reconhecimento de expressões tabulares:
 - Matrizes
 - Definição de função
 - Operadores com limites em pilha

- Reconhecimento de expressões tabulares:
 - Matrizes
 - Definição de função
 - Operadores com limites em pilha
- Símbolo pertencente a mais de uma área de abrangência.

Futuro

Futuro

• Aperfeiçoamento da interação com o usuário

Futuro

- Aperfeiçoamento da interação com o usuário
- Reconhecimento de expressões mais complexas

Referências

- [1] Ana Paula Santos de Mello, Eduardo Yutaca Komatsu, Fábio Marcos Eiji Okuda, and Leonardo Ka Wah Hing, *Math picasso segmentação e reconhecimento de caracteres em expressões matemáticas manuscritas*, 2007, http://www.linux.ime.usp.br/~eiji/mac499/index.php.
- [2] Nina S. T Hirata, ExpressMath reconhecimento de expressões matemáticas, http://www.vision.ime.usp.br/~nina/projetos/expressmath/, 2008.
- [3] Nicholas E. Matsakis, *Recognition of handwritten mathematical expressions*, Master's thesis, Massachusetts Institute of Technology, 1999.
- [4] E. Tapia and R. Rojas, Recognition of on-line handwritten mathematical expressions using a minimal spanning tree construction and symbol dominance, 2004.
- [5] R. Zanibbi, D. Blostein, and J. R. Cordy, Recognizing mathematical expressions using tree transformation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002.