Métodos Probabilísticos e Algébricos em Combinatória

Domingos Dellamonica Jr. Orientador: Yoshiharu Kohayakawa

1 de junho de 2004

Resumo

Este é um projeto de iniciação científica cuja finalidade é estudar métodos probabilísticos e algébricos na resolução de problemas combinatórios.

O conteúdo será distribuído em seções, onde cada método será discutido com exemplos encontrados na bibliografia e referências de estudo. Além de descrições e exemplos relacionados, alguns problemas selecionados serão resolvidos.

Acreditamos que a resolução de tais problemas é essencial para a absorção do conteúdo estudado e servirá de exemplo aos leitores.

Para compreender o texto é necessário algum conhecimento de probabilidade, álgebra linear e teoria dos grafos.

Sumário

1			obabilístico	3
	1.1	O Mé	todo Básico	3
		1.1.1	Teorema de Erdős-Ko-Rado	4
		1.1.2	Desbalanceando Luzes	5
	1.2	Linea	ridade da Esperança	7
		1.2.1	Partição de Grafo - Problema Resolvido	8
		1.2.2	Médias Aritméticas - Problema Resolvido	10
	1.3	Conju	untos Livres de Somas	11
2	Técnicas de Álgebra			
	2.1	Conh	ecimentos Necessários de Álgebra Linear	12
			· · · · · · · · · · · · · · · · · ·	
	2.2	Conju	intos Livres de Somas - Problema Resolvido	
		,		12
		,	ıntos Livres de Somas - Problema Resolvido	12 14
		Caso (2.3.1	ıntos Livres de Somas - Problema Resolvido	12 14 14
		Caso (2.3.1 2.3.2	untos Livres de Somas - Problema Resolvido	12 14 14 14

1 Método Probabilístico

1.1 O Método Básico

O Método Probabilístico tem como finalidade demonstrar que uma estrutura com certas propriedades existe. Para isso, um espaço de probabilidade adequado é definido e deve-se demonstrar que as propriedades desejadas aparecem em um elemento deste espaço com probabilidade positiva.

Ao longo do texto este conceito ficará mais claro, especialmente a partir dos muitos exemplos que serão detalhados a seguir.

Um exemplo simples de aplicação do método é na obtenção de cotas para os Números de Ramsey. O número R(k,l) é o menor inteiro n tal que em qualquer coloração das arestas do grafo completo com n vértices, K_n , usando-se duas cores (vermelho e azul, por exemplo) sempre existe um grafo K_k vermelho ou um K_l azul. Ramsey (1930) mostrou que R(k,l) é finito para quaisquer k e l.

Vamos usar o método para encontrar um limitante inferior para R(k, k).

Se
$$\binom{n}{k} 2^{1-\binom{k}{2}} < 1$$
 então $R(k,k) > n$.

Dem. Considere uma coloração das arestas de K_n com as cores vermelho e azul, onde cada aresta é colorida independentemente com igual probabilidade para ambas as cores.

Para qualquer conjunto R fixado com k vértices, seja A_R o evento em que o sub-grafo induzido por R é *monocromático* (todas as arestas tem a mesma cor).

Cada aresta é pintada independentemente e há 2 opções de cores, portanto

$$\Pr[A_R] = 2 \times 2^{-\binom{k}{2}}.$$

Como há $\binom{n}{k}$ possíveis escolhas para R, a probabilidade de pelo menos um dos eventos A_R ocorrer é limitada superiormente por

$$\binom{n}{k} 2^{1 - \binom{k}{2}} < 1.$$

Então, com probabilidade positiva, nenhum evento A_R ocorre. Isso significa que existe uma 2-coloração das arestas de K_n sem um K_k monocromático, ou seja, R(k,k) > n.

Método Probabilístico 1.1 O Método Básico

Corolário: $R(k,k) > 2^{k/2}$ para todo $k \ge 3$. Quando $k \ge 3$, se tomarmos $n = \lfloor 2^{k/2} \rfloor$, então

$$\binom{n}{k} 2^{1 - \binom{k}{2}} = \frac{n(n-1) \cdots (n-k+1)}{k!} 2^{1 + (k-k^2)/2} < \frac{2^{1+k/2}}{k!} \times \frac{n^k}{2^{k^2/2}} < 1,$$

portanto $R(k, k) > 2^{k/2}$ para todo $k \ge 3$.

1.1.1 Teorema de Erdős-Ko-Rado

Este teorema é um clássico da *Teoria Extremal dos Conjuntos*. A demonstração que daremos utiliza o Método Probabilístico, é bem concisa e serve de exemplo do poder do Método.

Uma família de conjuntos \mathcal{F} é dita intersectante se $A, B \in \mathcal{F}$ implica $A \cap B \neq \emptyset$. Suponha $n \geq 2k$ e seja \mathcal{F} uma família de k-conjuntos contidos em $\{0, 1, \dots, n-1\}$. O Teorema de Erdős-Ko-Rado nos diz que $|\mathcal{F}| \leq {n-1 \choose k-1}$.

Lema. Para $0 \le s \le n-1$, defina $A_s = \{s, s+1, \dots, s+k-1\}$, onde a adição é módulo n. A família intersectante \mathcal{F} possui no máximo k conjuntos da forma A_s .

Dem. Suponha que $A_i \in \mathcal{F}$. Há exatamente 2k-2 conjuntos da forma A_s que têm intersecção não vazia com A_i . Podemos arranjar esses 2k-2 conjuntos em k-1 pares de conjuntos disjuntos. Fica claro que \mathcal{F} pode conter no máximo um elemento de cada par, provando o lema.

Sejam σ uma permutação de $\{0,1,\ldots,n-1\}$ e $i\in\{0,1,\ldots,n-1\}$ escolhidos aleatoriamente, uniformemente e independentemente. Defina $A=\{\sigma(i),\sigma(i+1),\ldots,\sigma(i+k-1)\}$, com adição módulo n.

Pelo lema, temos que, para qualquer permutação σ tomada, há no máximo k dentre os n conjuntos da forma $\{\sigma(s), \sigma(s+1), \ldots, \sigma(s+k-1)\}$ em \mathcal{F} . Portanto, $\Pr[A \in \mathcal{F}] \leq k/n$.

Um pouco de reflexão mostra que isso é equivalente a escolher A aleatoriamente entre todos os k-conjuntos de $\{0, 1, \dots, n-1\}$. Sendo assim,

$$\frac{k}{n} \ge \Pr[A \in \mathcal{F}] = \frac{|\mathcal{F}|}{\binom{n}{k}}$$
, e então

$$|\mathcal{F}| \le \frac{k}{n} \binom{n}{k} = \binom{n-1}{k-1}.$$

Método Probabilístico 1.1 O Método Básico

1.1.2 Desbalanceando Luzes

TODO: (Esta parte deve estar mais conectada, preciso inserir as motivações para o que está sendo calculado, apresentar a análise assintótica a partir da identidade combinatória e chegar no resultado final do livro.)

Seja S_n uma variável aleatória correspondente a soma de n variáveis aleatórias uniformes em $\{-1,1\}$. Vamos demonstrar que

$$E[|S_n|] = n2^{1-n} \binom{n-1}{\lfloor (n-1)/2 \rfloor}.$$
 (1)

Por simetria, verificamos que para cada soma dessas n variáveis resultando num inteiro i existe uma soma resultando -i. Além disso, só existem somas nulas caso n seja par.

Uma soma com exatamente i elementos positivos ($n/2 < i \le n$) tem soma positiva i - (n - i) = 2i - n > 0.

Como cada soma tem probabilidade 2^{-n} de ser escolhida e existem $\binom{n}{i}$ somas com exatamente i elementos positivos, vemos que

$$E[|S_n|] = 2^{-n} \times 2 \sum_{n/2 < i \le n} \binom{n}{i} (2i - n). \tag{2}$$

Para verificarmos a proposição, nos resta mostrar que

$$k \binom{k-1}{\lfloor (k-1)/2 \rfloor} = \sum_{k/2 < i < k} \binom{k}{i} (2i-k). \tag{3}$$

Por inspeção, verificamos que a identidade acima está correta para k=1,2. Suponha que esta também seja verdadeira para $2 \le k \le n$.

Definimos $J_n = \{j : n/2 < j \le n\}$. Vamos utilizar a identidade $\binom{n}{i} + \binom{n}{i-1} = \binom{n+1}{i}^{\dagger}$ nesta demonstração.

[†]Esta identidade vale mesmo quando o índice inferior é negativo ou maior que n, assumindo que $\binom{n}{p}=0$ quando p<0 ou p>n.

Método Probabilístico 1.1 O Método Básico

Queremos provar a identidade (3) para k = n + 1, ou seja, precisamos obter

$$S = \sum_{i \in J_{n+1}} \binom{n+1}{i} (2i - n - 1).$$

Aplicando a identidade acima, temos

$$S = \sum_{i \in J_{n+1}} \left(\binom{n}{i} + \binom{n}{i-1} \right) (2i - n - 1),$$

onde o somatório pode ser quebrado em duas somas,

$$S_{1} = \sum_{i \in J_{n+1}} \binom{n}{i} (2i - n) - \sum_{i \in J_{n+1}} \binom{n}{i},$$

$$S_{2} = \sum_{i \in J_{n}} \binom{n}{i-1} (2(i-1) - n) + \sum_{i \in J_{n}} \binom{n}{i-1}.$$

Vamos analisar o caso n par e o caso n impar separadamente:

1. Quando n=2m, $J_n=\{m+1,\ldots,2m\}$ e $J_{n+1}=J_n\cup\{2m+1\}$. Como $\binom{2m}{2m+1}=0$, temos

$$S_1 = \sum_{i \in J_n} \binom{n}{i} (2i - n) - \sum_{i \in J_n} \binom{n}{i}$$
, e

$$S_2 = \sum_{i \in J_n} \binom{n}{i} (2i - n) + \sum_{i \in J_n} \binom{n}{i} + \binom{n}{n/2}$$

pois quando i=m+1 o termo $\binom{n}{i-1}(2i-n-2)$ se anula. Restaurando a soma, obtemos

$$S = S_1 + S_2 = 2 \sum_{i \in J_n} {n \choose i} (2i - n) + {n \choose n/2}.$$

A hipótese de indução nos garante que

$$\sum_{i \in J_n} \binom{n}{i} (2i - n) = n \binom{n - 1}{\lfloor (n - 1)/2 \rfloor} = 2m \binom{2m - 1}{m - 1}.$$

Com algumas manipulações algébricas simples chegamos a

$$S = (2m+1) \binom{2m}{m} = (n+1) \binom{n}{\lfloor n/2 \rfloor},$$

que é exatamente a identidade desejada.

2. O caso n ímpar é análogo ao caso par. Diferenças sutis aparecem na manipulação dos índices dos somatórios.

A identidade (3) segue por indução para todo $n \ge 1$ e assim obtemos a fórmula fechada (1) para $E[|S_n|]$.

1.2 Linearidade da Esperança

Em todo o texto, se X é uma variável aleatória, $\Pr[X=i]$ é a probabilidade de X assumir o valor i. Para variáveis contínuas isso não faz sentido já que a probabilidade uma variável contínua assumir um valor específico é sempre 0.

Caso X seja uma variável aleatória contínua, definimos f(x) como a função de densidade de probabilidade de X, de modo que

$$\Pr[a \le X \le b] = \int_a^b f(x)dx.$$

Definimos o conceito de **Esperança** de uma variável aleatória X como

$$E[X] = \sum_{i=-\infty}^{\infty} i \times \Pr[X=i]$$
 , no caso discreto e

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$
, no caso contínuo.

Uma propriedade muito útil da Esperança é que se X_1, X_2, \ldots, X_n são variáveis aleatórias, c_1, \ldots, c_n são constantes e a variável aleatória $X = c_1 X_1 + \cdots + c_n X_n$, então $E[X] = c_1 E[X_1] + \ldots + c_n E[X_n]$.

O grande poder desta propriedade é que não é exigido absolutamente nada sobre as variáveis X_1, \ldots, X_n , elas podem ser dependentes, de distribuições completamente diferentes e o resultado continua valendo.

Vamos agora dar um exemplo do uso da Linearidade da Esperança:

Seja G = (V, E) um grafo com n vértices e e arestas. Então G contém um sub-grafo bipartido com pelo menos e/2 arestas.

Dem. Seja $T\subset V$ um subconjunto aleatório formado escolhendo-se independentemente elementos de V, com probabilidade 1/2 de estarem em T. Defina B=V-T, dizemos que uma aresta $\{x,y\}$ cruza as partes B e T se exatamente um elemento de $\{x,y\}$ está em T. Seja X o número de arestas que cruzam as partes. Podemos decompor

$$X = \sum_{\{x,y\} \in E} X_{xy},$$

onde X_{xy} é a variável aleatória indicadora para o evento em que a aresta $\{x,y\}$ cruza as partes. Mas então

$$E[X_{xy}] = \Pr[x \in B, y \in T] + \Pr[x \in T, y \in B],$$

como os eventos são independentes,

$$E[X_{xy}] = \Pr[x \in B] \Pr[y \in T] + \Pr[x \in T] \Pr[y \in B] = 1/2.$$

Pela Linearidade da Esperança, $E[X] = \sum_{\{x,y\} \in E} E[X_{xy}] = e/2$. Sendo assim, para alguma escolha de T, devemos ter $X \ge e/2$.

Para essa escolha de T, elimine as arestas que não cruzam as partes. Tome o grafo formado como um sub-grafo bipartido de G com pelo menos e/2 arestas.

1.2.1 Partição de Grafo - Problema Resolvido

Este problema foi retirado de TODO: (fazer uma ref. bibliográfica aqui).

Problema: Seja G = (V, E) um grafo com n vértices de grau mínimo d > 10. Mostre que há uma partição de V em dois conjuntos disjuntos A e B tal que $|A| = O(\frac{n \log(d)}{d})$, e todo vértice de B tem ao menos um vizinho em A e ao menos um vizinho em B.

Considere como espaço de probabilidade (uniforme) todas as partições possíveis com $|A| = \lceil n \log(d)/d \rceil$. Defina p = |A|/n.

Dado um elemento $x \in V$, definimos d(x) como o grau de x.

Se x é um vértice e todo vizinho de x está em B, dizemos que x é do tipo 1. Se todo

vizinho de x está em A, dizemos que x é do tipo 2.

Sendo assim,

$$\Pr[x \text{ \'e do tipo } 1] = \frac{|B|}{n} \frac{|B| - 1}{n - 1} \cdots \frac{|B| - d(x) + 1}{n - d(x) + 1} < \left(\frac{|B|}{n}\right)^{d(x)} =$$

$$= (1 - p)^{d(x)} \le (1 - p)^d \le e^{-pd} \le e^{-\log(d)} = 1/d,$$
(4)

$$\Pr[x \text{ \'e do tipo 2}] = \frac{|A|}{n} \frac{|A| - 1}{n - 1} \cdots \frac{|A| - d(x) + 1}{n - d(x) + 1} < \left(\frac{|A|}{n}\right)^{d(x)} =$$

$$= p^{d(x)} \le p^{d}.$$
(5)

Em (4), estamos usando a desigualdade $1+x \le e^x$, que vale para todo x real. Nas passagens $(1-p)^{d(x)} \le (1-p)^d$ e $p^{d(x)} \le p^d$, usamos que $0 e <math>d(x) \ge d$, pois d é o grau mínimo do grafo.

Como $p = |A|/n \ge \log(d)/d$, temos $pd \ge \log(d)$ e, portanto, $-pd \le -\log(d)$. Logo $e^{-pd} < e^{-\log(d)}$.

Defina X como uma variável aleatória que indica quantos vértices são do tipo 1 e, analogamente, defina Y como uma variável aleatória que indica quantos vértices são do tipo 2. A partir de (4) e (5), obtemos $E[X] \le n/d$ e $E[Y] \le np^d$.

Pela Linearidade da Esperança, temos

$$E[X+Y] \le n(1/d + p^d).$$

Portanto, existe uma partição de V em partes A e B, com |A|=pn, de forma que há x elementos de tipo 1 e y elementos de tipo 2, com

$$x + y \le n(1/d + p^d). \tag{6}$$

Mova todos os elementos de tipo 1 que estejam em B para A (no máximo x elementos).

Se $u \in B$ é um elemento de tipo 2, temos duas situações possíveis:

(i) todo vizinho $v \in B$ de u, que não é de tipo 2, possui um vizinho em B que **não** é de tipo 2;

(ii) existe um vizinho $v \in B$ de u, que não é de tipo 2, cujos vizinhos em B são **todos** de tipo 2.

No primeiro caso, se movermos u para A, estaremos reduzindo o conjunto dos elementos de tipo 2 (u e todos os seus vizinhos de tipo 2 deixarão de sê-lo). Fazendo essa movimentação, nenhum elemento passa a ser do tipo 2 se já não era antes. Também não transformamos nenhum vértice em um elemento de tipo 1, pois todos os vizinhos de u (os vértices que poderiam ser afetados pela movimentação) têm vizinhos em B.

No segundo caso, se movermos o vizinho v para A, u deixará de ser tipo 2 (todo vizinho de v que seja de tipo 2 deixará de sê-lo). Também não transformamos vértices em elementos do tipo 1 ou tipo 2 neste caso.

Podemos, através de sucessivas movimentações, eliminar todos elementos de tipo 2. Para que isso ocorra, teremos de mover no máximo y elementos de B para A.

Após tais movimentações, a partição não terá elementos de tipo 1 ou 2 e, portanto, todo vértice em B terá ao menos um vizinho em A e ao menos um vizinho em B. A partir da inequação (6), temos $|A| \leq pn + n(1/d + p^d)$.

É simples ver que $1/d+p^d<2/d< p$ para d>10 e, portanto, $|A|\leq 2pn$, ou seja, $|A|=O(\frac{n\log(d)}{d})$, como queríamos.

1.2.2 Médias Aritméticas - Problema Resolvido

O problema a seguir foi parte da prova da IMO (International Math Olympiad) de 1981. Provaremos uma generalização deste utilizando o método probabilístico (esta prova é uma adaptação de uma proposta de solução no livro *TODO: ref.*).

Problema: Seja $1 \le r \le n$ e considere todos os subconjuntos de $\{1, 2, ..., n\}$ com r elementos. Cada um desses subconjuntos tem um elemento mínimo. Seja F(n, r) a média aritmética desses elementos mínimos; prove que

$$F(n,r) = \frac{n+1}{r+1}.$$

Seja $k \le r$, todo subconjunto de $\{1,2,\ldots,n\}$ com r elementos tem um k'ésimo menor, defina F(n,r,k) como a média aritmética de tais elementos. Fica claro que F(n,r)=F(n,r,1).

Se definirmos X como o k'ésimo menor elemento de um r-conjunto de $\{1, 2, \dots, n\}$ sorteado aleatoriamente e uniformemente, teremos E[X] = F(n, r, k).

Vamos montar um experimento aleatório que é simples de analisar e mostrar que este experimento é equivalente a selecionar um r-conjunto de $\{1, 2, ..., n\}$ uniformemente.

Considere uma circunferência de comprimento n+1 com n+1 pontos igualmente espaçados marcados (não diferenciados). Escolha aleatoriamente r+1 pontos destes marcados. Suponha que C_1, \ldots, C_{r+1} sejam variáveis aleatórias correspondentes aos tamanhos dos arcos formados pelos intervalos entre dois pontos escolhidos consecutivos.

Como $E[C_1 + \cdots + C_{r+1}] = n+1$ e, por simetria, $E[C_1] = E[C_2] = \cdots = E[C_{r+1}]$, pela Linearidade da Esperança, temos

$$E[C_1 + \cdots + C_{r+1}] = (r+1)E[C_1]$$
, portanto $E[C_1] = (n+1)/(r+1)$.

Quebre a circunferência no (r+1)'ésimo ponto escolhido e estique para formar uma linha. Os pontos que estavam marcados na circunferência agora recebem uma numeração nesta linha, ao (r+1)'ésimo ponto escolhido associamos 0 e, caminhando no sentido horário, por exemplo, numeramos sequencialmente os pontos marcados.

Note para uma escolha dos r+1 pontos na circunferência, temos uma escolha de r pontos em $\{1,2,\ldots,n\}$. Também verificamos que, para qualquer escolha de r pontos em $\{1,2,\ldots,n\}$, podemos selecionar um ponto marcado arbitrário da circunferência e escolher os demais pontos a partir desse primeiro no sentido horário (o primeiro ponto selecionado realmente não faz diferença pois os pontos na circunferência não são numerados).

Temos então um mapa um-para-um entre os eventos nos dois espaços de probabilidade. Como ambos são uniformes, a esperança do k'ésimo menor elemento de um r-conjunto de $\{1,2,\ldots,n\}$ escolhido de forma uniforme é equivalente a esperança do tamanho dos k segmentos consecutivos a partir do (r+1)'ésimo ponto escolhido. Mas essa esperança é precisamente k(n+1)/(r+1), como queríamos.

1.3 Conjuntos Livres de Somas

Dizemos que um conjunto S é livre de somas quando não existem $a,b,c\in S$, tais que a+b=c. Vamos apresentar um teorema, provado por Erdős em 1965.

TEOREMA: Todo conjunto $B = \{b_1, \ldots, b_n\}$ de inteiros não nulos contém um subconjunto A, livre de somas, de tamanho |A| > n/3.

Dem.: Seja p=3k+2 um primo satisfazendo $p>2\max_{1\leq i\leq n}|b_i|$ e defina $C=\{k+1,k+2,\ldots,2k+1\}\subset\mathbb{Z}_p$. Veja que C é livre de somas em \mathbb{Z}_p e que

$$\frac{|C|}{p-1} = \frac{k+1}{3k+1} > \frac{1}{3}.$$

Escolha um elemento aleatório x, de \mathbb{Z}_p^* , conforme uma distribuição uniforme. Defina $d_i=xb_i \mod p$, $1\leq i\leq n$. Note que como p é primo e $b_i\ncong 0\pmod p$, $\varphi_i(x)=xb_i$ é uma função bijetiva e, portanto, $\Pr[d_i\in C]=|C|/(p-1)>1/3$. O número esperado de elementos b_i tais que $d_i\in C$ é maior que n/3. Logo, existe um $x\in\mathbb{Z}_p^*$ e $A\subset B$ de cardinalidade |A|>n/3 tal que $xy\mod p\in C$ para todo $y\in A$. Mas A é livre de somas, pois se $a_1,a_2,a_3\in A$ são tais que $a_1+a_2=a_3$, então $xa_1+xa_2\equiv xa_3\pmod p$, o que contradiz o fato de que C é livre de somas.

Vamos mostrar que tal teorema pode ser generalizado. É simples ver que se B é um conjunto de n números racionais, podemos multiplicar todos os elementos do conjunto por um inteiro k, que cancela todos os denominadores, ou seja, $kB = \{kx \mid x \in B\}$ é um conjunto de n inteiros. Pelo teorema acima, existe $A \subset kB$, com |A| > n/3, livre de somas. Mas então, $(1/k)A \subset B$ é livre de somas e tem tamanho maior que n/3.

Podemos ir além e provar tal teorema para um conjunto de n números reais. Faremos isso em 2.2, onde serão abordadas técnicas de álgebra linear aplicadas a problemas combinatórios.

2 Técnicas de Álgebra

texto...

2.1 Conhecimentos Necessários de Álgebra Linear texto...

2.2 Conjuntos Livres de Somas - Problema Resolvido

Este problema foi proposto no livro *Probabilistic Method* e é uma generalização do teorema visto em 1.3. Queremos mostrar que *todo conjunto* $B = \{b_1, \ldots, b_n\}$ *de reais não*

nulos contém um subconjunto A, livre de somas, de tamanho |A| > n/3.

Seja $B = \{b_1, \ldots, b_n\}$ um conjunto de n números reais. Sejam x_1, \ldots, x_n , variáveis. Para cada $1 \le i, j, k \le n$ com $b_i + b_j = b_k$, adicione a equação $x_i + x_j - x_k = 0$ a um sistema de equações lineares. Se não existem i, j, k dessa forma, então B é livre de somas e o enunciado é satisfeito.

Caso o sistema tenha pelo menos uma equação, podemos definir uma matriz \mathbf{T} , correspondente ao sistema linear homogêneo formado. Note que as entradas de \mathbf{T} são elementos de $\{0,1,-1\}$, que são racionais.

Denotamos $\ker(\mathbf{T}) = \{\mathbf{x} \mid \mathbf{T}\mathbf{x} = \mathbf{0}\}$ (alguns autores definem o núcleo de uma transformação linear \mathbf{T} como $\mathrm{Null}(\mathbf{T})$). Como $\mathbf{b} = (b_1, \dots, b_n)$ é solução do sistema por definição, $\mathbf{b} \in \ker(\mathbf{T})$, ou seja, $\ker(\mathbf{T}) \neq \emptyset$ e, portanto, deve haver uma base de $\ker(\mathbf{T})$ com vetores de coordenadas racionais (pois \mathbf{T} tem coordenadas racionais).

Seja $\mathbf{u} \in \ker(\mathbf{T}) \cap \mathbb{Q}^n$ com o menor número de coordenadas repetidas, ou seja, $\#\{(i,j) \mid u_i = u_j\}$ é mínimo. Vamos mostrar que u não tem coordenadas repetidas.

Suponha que $u_i = u_j$. Existe um vetor $\mathbf{v} \in \ker(\mathbf{T}) \cap \mathbb{Q}^n$ com $v_i \neq v_j$. Caso contrário, todos os vetores da base de $\ker(\mathbf{T})$ teriam as coordenadas i e j iguais, mas como b é uma combinação linear dos vetores de tal base (com coeficientes reais), teríamos $b_i = b_j$, o que é absurdo.

Vamos mostrar que para algum $\lambda \in \mathbb{Q}^*$, $\mathbf{u} + \lambda \mathbf{v}$ tem estritamente menos coordenadas repetidas que \mathbf{u} . Para isso, veja que

$$u_i + \lambda v_i \neq u_j + \lambda v_j$$
.

Além disso, $u_k + \lambda v_k = u_l + \lambda v_l$ somente se $u_k - u_l = \lambda (v_k - v_l)$. Então, ou $u_k - u_l = v_k - v_l = 0$, ou

$$\lambda = \frac{u_k - u_l}{v_k - v_l}.$$

Como há um número finito de pares (k,l), os valores que λ não pode assumir formam um conjunto finito e, portanto, para infinitos valores de λ , $\mathbf{u} + \lambda \mathbf{v}$ possui menos coordenadas repetidas que \mathbf{u} , o que contradiz a definição de \mathbf{u} .

Para concluir a demonstração, tome $U=\{u_1,\ldots,u_n\}$, que é um conjunto de n números racionais. Pelo teorema 1.3, existe $U'\subset U$, de cardinalidade |U'|>n/3, livre de somas. Mas se $U'=\{u_{i_1},\ldots,u_{i_r}\}$, o conjunto $A=\{b_{i_1},\ldots,b_{i_r}\}\subset B$ deve ser livre de somas.

2.3 Caso de Igualdade do Teorema de Erdős-Ko-Rado

Esta é uma adaptação de um paper de Peter J. Cameron ¹ apresentando uma demonstração para um dos principais resultados da Teoria Extremal de Conjuntos.

O teorema de Erdős-Ko-Rado já foi demonstrado na seção 1.1.1 usando o método probabilístico. Agora daremos uma demonstração diferente e caracaterizaremos o caso de igualdade do teorema.

2.3.1 Algumas Definições

Um automorfismo num grafo G=(V,E) é uma função $f:V\mapsto V$, bijetora, que preserva arestas, ou seja, $(u,v)\in E$, $(f(u),f(v))\in E$.

Um grafo G é dito vértice-transitivo se, para quaisquer vértices x e y de G, exista um automorfismo g com g(x) = y.

Se X é um conjunto de vértices e g uma função definida para todo elemento de X, convencionamos que $X^g = \{g(x) : x \in X\}$.

2.3.2 Lema sobre Grafos Vértice-Transitivos

Seja G=(X,E) um grafo vértice-transitivo. Seja $Y\subset X$ tal que todo clique em Y tem tamanho máximo |Y|/m. Então, qualquer clique em G tem tamanho máximo |X|/m. Um clique G atingindo tal limite satisfaz $|G^g\cap Y|=|Y|/m$ para todo automorfismo G0 de G1.

Demonstração Seja N a ordem do grupo de automorfismos de G. Dados $x,y \in X$, o número de automorfismos satisfazendo $g(x) = y \in N/|X|$.

Note que para todo $z \in X$ existe um automorfismo π , com $\pi(y) = z$. Sendo assim, se $\sigma_1, \sigma_2, \ldots, \sigma_r$ são tais que $\sigma_i(x) = y, i = 1, \ldots, r$, então $\pi\sigma_i(x) = z, i = 1, \ldots, r$ são r automorfismos distintos (teoria dos Grupos) que levam x a z. Por simetria, vemos que o número de automorfismos que levam x a qualquer elemento de X deve ser o mesmo, N/|X|.

Suponha que C seja um clique no grafo. Vamos agora contar os pares x,g onde x é um vértice em C e g um automorfismo tal que $g(x) \in Y$. Há |C| escolhas para o vértice x e N/|X| possíveis automorfismos g com g(x) = y para todo $y \in Y$. O número de pares é, portanto, |C||Y|N/|X|.

¹ Obtido na Web em http://www.maths.qmw.ac.uk/~pjc/comb/.

Podemos contar os mesmos pares por outra perspectiva. Para cada um dos N automorfismos g, há no máximo |Y|/m escolhas para $x \in X$. Para esta afirmação, veja que C^g é um clique e, como qualquer clique em Y tem tamanho máximo |Y|/m, $|C^g \cap Y| \leq |Y|/m$. Como g é uma bijeção, há no máximo |Y|/m escolhas para $x \in X$.

Sendo assim, $|C||Y|N/|X| \le N|Y|/m$. Simplificando, temos $|C| \le |X|/m$, como no lema. Para o caso de um clique satisfazendo o limite, devemos ter N|Y|/m pares x, g e, como vimos, isso só é possível se, para todo automorfismo g, tivermos $|C^g \cap Y| = |Y|/m$.

2.3.3 Demonstrando o Teorema

Seja $n \geq 2k$. Uma família intersectante de k-conjuntos de um n-conjunto tem cardinalidade máxima $\binom{n-1}{k-1}$.

Demonstração Considere o grafo G=(X,E) cujos vértices são todos os k-conjuntos de um n-conjunto e as arestas ligam conjuntos que tem intersecção não vazia.

O grafo G é vértice-transitivo pois qualquer permutação do n-conjunto serve de automorfismo. Resta-nos mostrar que há uma família Y, de k-conjuntos, com |Y|=n, tal que qualquer subfamília intersectante de Y tem tamanho no máximo k. Se este é o caso, teremos encontrado um subconjunto de vértices do grafo que não possui nenhum clique (uma família intersectante é um clique) de tamanho maior que (k/n)|Y|. Pelo Lema, qualquer clique em G teria no máximo $(k/n)|X| = (k/n)\binom{n}{k} = \binom{n-1}{k-1}$ vértices.

Para facilitar a demonstração, tomaremos \mathbb{Z}_n como n-conjunto, mas o resultado valerá para qualquer n-conjunto.

Considere $Y = \{Y_i = \{i, i+1, ..., i+k-1\} : i \in \mathbb{Z}_n\}$. Vamos mostrar que em tal conjunto, não podemos escolher mais que k conjuntos intersectantes.

Fixe um conjunto escolhido inicialmente, digamos Y_0 . Como $n \geq 2k$, qualquer conjunto de Y que intercepte Y_0 deve ter como intersecção uma seqüência de inteiros módulo n. Sendo assim, todos os conjuntos que interceptam Y_0 são $\{Y_{1-k}, \ldots, Y_{-1}, Y_1, \ldots, Y_{k-1}\}$.

Veja que os pares $\{(Y_{1-k}, Y_1), (Y_{2-k}, Y_2), \dots, (Y_{-1}, Y_{k-1})\}$ são formados por conjuntos disjuntos. Portanto, no máximo podemos escolher um elemento de cada par para formar uma família intersectante, ou seja, no máximo k-1 desses conjuntos podem, junto

com Y_0 , formar uma família intersectante.

Além disso, caso n > 2k, é possível ver que a única maneira de conseguir k conjuntos intersectantes em Y é tomando conjuntos consecutivos, pois (Y_{i-k}, Y_{i+1}) e (Y_i, Y_{i+1-k}) , $i = 1, \ldots, k-2$, também formam pares disjuntos.

Dessa forma, se escolhermos Y_1 , não poderemos escolher Y_{2-k} , devemos tomar Y_2 , analogamente, não podemos escolher Y_{3-k} e devemos tomar Y_3 ... A situação é a mesma se escolhermos primeiro Y_{1-k} .

2.3.4 Caso de Igualdade

Para n=2k, podemos particionar todos os k-conjuntos em pares disjuntos. Tome um elemento de cada par e teremos uma família intersectante de tamanho

$$\frac{1}{2} \binom{2k}{k} = \frac{(2k)!}{2(k!)^2} = \frac{(2k-1)!}{k!(k-1)!} = \binom{2k-1}{k-1} = \binom{n-1}{k-1}.$$

Para n > 2k, mostraremos que as únicas famílias intersectantes atingindo o tamanho máximo são do tipo $\mathcal{F}_j = \{S \subset \mathbb{Z}_n : |S| = k, j \in S\}$. No caso anterior, existe um número muito grande de famílias intersectantes possíveis (com tamanho máximo) e apenas n famílias do tipo \mathcal{F}_j , ou seja, a grande maioria das famílias não é do tipo \mathcal{F}_j .

Seja $\mathcal F$ uma família intersectante de tamanho máximo. Vamos começar com duas observações:

- 1. Suponha que existam x e y tais que todo k-conjunto contendo x e não contendo y pertence a \mathcal{F} . Então \mathcal{F} consiste de todos os k-conjuntos contendo x. Para ver isso, suponha que $L \in \mathcal{F}$ não contenha x, então existe um k-conjunto K, com $L \cap K = \emptyset$ que contem x mas não y (pois $|\mathbb{Z}_n L| = n k > k$), mas é impossível termos $K, L \in \mathcal{F}$.
- 2. Há dois k-conjuntos, K, K', com $|K \cap K'| = k-1$, com $K \in \mathcal{F}$ e $K' \notin \mathcal{F}$. Suponha que isso não seja verdade e sejam $\{a_i\}_{i=1}^n = \mathbb{Z}_n$ e $K_1 = \{a_1, \ldots, a_k\} \in \mathcal{F}$. Devemos ter $K_2 = \{a_2, \ldots, a_{k+1}\}$ em \mathcal{F} pois $|K_1 \cap K_2| = k-1$. Continuando dessa mesma forma obteremos $K_{k+1} = \{a_{k+1}, \ldots, a_{2k}\} \in \mathcal{F}$, mas $K_1 \cap K_{k+1} = \emptyset$.

Tome K, K' como em (2) e, sem perda de generalidade, assuma que $K = \{0, \ldots, k-1\}$ e $K' = \{1, \ldots, k\}$. Por (1), podemos tomar $K'' \notin \mathcal{F}$ com $0 \in K''$ e $k \notin K''$, e também podemos assumir sem perda de generalidade que $K'' = \{l-k, \ldots, 0, 1, \ldots, l-1\}$, com $1 \le l < k$.

Pela caracterização de igualdade do lema, devemos ter k conjuntos intersectantes em Y e, como vimos acima, isso ocorre somente se tomarmos k conjuntos consecutivos. Mas $Y_0 = K \in \mathcal{F}, Y_1 = K' \notin \mathcal{F}, Y_{l-k} = K'' \notin \mathcal{F}$, ou seja, é impossível tomar k conjuntos intersectantes em Y.