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Abstract 
 
The mean-variance formulation by Markowitz in 1956 and 
its efficient solution by Wolfe in 1959 paved a foundation 
for modern portfolio selection. In this work we start 
reviewing basic concepts about portfolio selection, 
showing one starting solution and then the mean-variance 
analysis proposed by Markowitz. We show an algorithm 
for efficient frontier derivation, proposed by Wolfe, and 
analyze the performance of 24 portfolios generated by our 
implementation of this method, 12 of then in a bull market 
and the other 12 in a bear market. After that we finish our 
work presenting some limitations of this formulation and 
recent studies where preference for skewness is introduced. 
Another nonlinear models are also suggested. 
 
Key Words: Quadratic Programming, Portfolio Selection, 
Utility Function, Skewness. 
 
 
 
1   Basic Definitions 
 
1.1 The Problem 
 
Consider an investor that seeks a best allocation of wealth 
among a basket of risky assets, called portfolio. The best 
can be defined as an allocation such that the risk incurred 
is minimum for that level of expected return or the 
expected return is maximum for that level of risk. 
The data of the problem consists in an array of returns, 
where each component i of this array is the expected return 
to the asset i in the considered horizon: 
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We have also a covariance matrix as the shown below: 
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This matrix is positive semidefinite. 
The expected return for a portfolio with n assets is x’r, where 
each component i of the array ),...,,( 21 nxxxx =  is the fraction 

of the investor wealth allocated in the asset i. The portfolio 
risk is x´Cov x. By assumption, the investor will allocate all 
his wealth in the selected portfolio. 
As he wants to obtain the optimal relation between return and 
risk, the nonlinear programming problem needed to solve is 
the following:  
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Where fR  is the return of a riskless asset. 

There are many methods of nonlinear programming that may 
be used to solve this problem. One of them is the following. 
Let’s substitute the constraint in the objective function and  
solve an uncostrained problem. Of course, this does not work 
in every maximization problem. It works here because the 
differential equations of the problem are homogenous of 
degree zero. 
Let be 

ff RR 1= . Now the problem can be stated as the 

following:  
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To solve it, we have only to find the gradient of the 
objective function. In the point where this array is equal to 
zero, we’ll have a maximum as this new problem is 
unconstrained and the second derivative of objective 
function is always negative. This fact is guaranteed by 
structure of the problem, as proved in [1]. 
So this is equivalent to solve the following system of linear 
equations: 

 
1.1.3 

 
 
But is proved in [1] that, for each i, the equation above is 
equivalent the equation: 
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Therefore solve the proposed system of differencial 

equations is reduced to solve the system RZCov =.  

where Z is an array such that the component kk wxZ =  

and R  is an array such that fkk RrR −=  for all k.  

The last step of this basic problem is to solve the system 
finding Z and then multiplying the solution found by a 
factor such that the sum of the components of x is equal to  
1, as Z is proportional to x. 

 
1.2  Extending the Problem 
 

The proposed problem may ser extended to become more 
realistic. There are several possible extensions: 

• Add cash constraints: uxl ≤≤ ; 
• Add many linear constraints as: book value 

concentration, portfolio’s beta, liquidity of the 
assets included in the portfolio, dividend yield, 
and more; 

• Parameterize the risk aversion of the investor. In 
this way, the ideal algorithm would find more than 
the portfolio with the maximum expected return 
possible per risk unit. It would find for all the 
feasible returns, the portfolio that has this 
expected return with the minimum risk possible. 
Obtaining this portfolios we will have the 
Markowitz Efficient Frontier that is, by definition, 
the set of portfolios with minimum risk for all the 
feasible returns. 

 
 

Therefore the extended problem is stated as the following: 
min  x’ Cov x Rx'λ−  

1.2.1  s.t.   
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We want to find all the feasible solutions of this problem, i.e. 
for all the values of 0≥λ . Doing this, we’ll be solving a 
quadratic parametric problem, whose algorithm was initally 
proposed by Harry Markowitz in 1956 and complemented by 
Wolfe in 1959. This algoritm has received the name of 
Wolfe’s method. We will now talk more about his details and 
implementation. 

 
 
2   Methods to Solve Quadratic Problems 
 
2.1. Formulation of the Quadratic Model  
 
The problem modeled in 1.2.1 may be reduced to the 
following quadratic programming problem (QP): 
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where C is a matrix n by n such that, by assumption: 

� C is positive semidefinite 

� There is some nq ℜ∈  such that r = Cq. 

To adapt (QP) to 1.2.1, r now is an array such that each 
component i is the return of the asset i subtracted the return of 
a riskless asset. The equality constraints of 1.2.1 may be 
substituted by two inequality constraints and if we want to 
allow short sales we can introduce artificial variables. Since 
the objective function is quadratic and convex, to solve (QP) 
we have to find a feasible solution that meets the Kuhn-
Tucker conditions. In this case, they are necessary and 
sufficient optimality criterion. A Simplex-based method that 
solve this problem was proposd by Wolfe in [2], with two 
variations. One solve the problem for a fixed value of 
λ (called “short form” in the original paper) and the other 
solve the problem using λ as a parameter, finding a set of 
critical solutions that can generate all feasible solutions 
(called “long form” in the original paper). These methods 
solve the problem (QP) in a finite number of steps. 
Markowitz had proposed another method for optimization of 
a quadratic function with linear constraints 3 years before of 
the Wolfe’s proposal. Although this method is different of the 
Wolfe’s method, one can proof that both find the same 
results. 
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2.2. The Wolfe’s Method 
 
The method shown below solve the problem for one 
fixed value of the parameter. The first step is to 

introduce non-negative slack arrays nm vy ++ ℜ∈ℜ∈ ,  

defined by: 
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where mu +ℜ∈  is the array of Lagrange multipliers.  

A pair of variables xj, vj will be called complementary 
pair and the other pair of variables yi, vi will also be 
complementry. With this notation the Kuhn-Tucker 
conditions of the model above take the following form: 
2.2.1 (a)   0,,, ≥uvyx  

 (b) byAx =+   

 (c) ruAvCx λ=−+− '  

 (d)   0'' =+ uyvx  

In [3] is demonstrated the following theorem: 
The parts yx,  of any solution for the Kuhn-Tucker 

conditions are a vertex of the following polytope: 
=Μ [ ]{ ',' ux ..qt }0,0,', ≥≥≤−−≤ uxruACxbAx λ  

In this way, the problem of finding the solution of 2.2.1 
is reduced to the problem of finding an admissible basis 
B of the matrix: 
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iy and iu . 

For this purpose we introduce artificial variables in 
2.2.1(b) and perform the Phase I of the Simplex method 
until we form an initial basis for 2.2.1(b). After that, we 
introduce a new set of artificial variables in 2.2.1(c)  to 
create an initial artificial basis without the columns 
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, i.e. without any v  or y component. 

So 2.2.1(d) is satisfied at the beginning with 
0,0 == uv . The complementarity property 

0'' =+ uyvx  will be preserved while the basic 

artificial variables are eliminated. A complementary 

variable pair jj vx ,  or ii uy ,  will never both be basic. 

In this way, the solution to 2.2.1 will be obtained when 
the x part solves 2.1.1. 
After the brief description given above, we can 
formulate a Quadratic Programming algoritm as the 
described below: 
 
Phase 0. Solve the following linear programming 
problem: 
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And for each j, jj bb =* . E is the identity matrix. 

Having initial feasible solution 
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basis Dini ≡  [ E ]. 

Case 1.  Let be x , y  and 1z  the arrays found in the 

final solution. If 0' 1 ≠− ze  then stop – the 

problem is unfeasible. Else, go to phase 1. 
 

Phase 1.  Solve the following linear 
programming problem: 

2.2.3  max      2' ze−  

  s.t. 01 ≥fx  

  111 fff bxD =  
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, for 

each line j of the matrix 1fE . 

Let be fimD  the final phase 0 basis and fimC  the matrix 

formed by columns of [ 0C− ] corresponding to the 

columns of [ EEA ** ] selected by fimD . To solve 

the phase 1 problem, take as initial basis the matrix: 
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whose initial feasible solution will be: 
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Solve the problem 2.2.3 by the Simplex method, starting 

with the inicial basis 1B  and its respective basic solution 
2.2.4 apllying the following entry basis restriction: 
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 must not enter the 

basis (note that the solution 2.2.4 satisfy the condition 
2.2.5). 
Without the entry basis restriction, we can be sure that 

when the algorithm above stops 0´ 2 =ze  (since the 

problem 2.2.3 is always feasible). Wolfe proved in [2] 
that even with this condition, when the algorithm stops 
the optimal value of 2.2.3 will be 0. He also proved the 
following theorem: 
The problem 2.1.1 has optimal solution  if ℑ  is not 
empty and the part corresponding to x of the optimal 
solution of 2.2.3 under the condition 2.2.5 is this 
solution. 

In this form, we made a more sophisticated model to the 
proposed problem in the part 1 and we shown a method 
based in the Simplex to solve it. The method shown 
solves the problem 2.1.1 when the parameter λ  is 
constant in a finite number of steps. It means that, 
having the investor’s risk aversion level ( λ  can 
represent the inverse of the investor’s risk aversion), 
having the covariance matrix, the array of  returns of 
each market asset and having the linear constraints, we 
can obtain the best portfolio concerning risk and 
expected return. It’s known in literature as efficient 
portfolio. 
Although if the our objective is obtain all the efficient 
portfolios, i.e. obtain all the portfolios whose risk is 
minimum (or expected return is maximum), we will 
have to solve the problem varying λ  from ∞−  to 0. 
But it doesn’t seem to be reasonable, since it will be 
very computationaly expensive (the algorithm is based 
in the Simplex Method and its worst case is 
exponential). One can simply try to choose a random set 
of values in the required interval and solve the problem 
only for them, obtaining a solution for a particular value 
between two actual solutions as a linear combination of 
them. It seems reasonable but doing this we will be 
subject to the risk of choose the wrong values, choosing 
values that do not have important information. The 
parametric version is like this proposal, but the values 
are obtained with a simple criteria. 
To solve this problem, Wolfe proposed in the same 
article a variation of the algorithm of quadratic 
programming , called “long form” in the original paper, 
that find in a more efficient way a set of solutions that 
can generate a solution for any value 0≤λ . From now 
on, we will study this variation. 
 
2.3.  The Parametric Version 
 
As noted before, the optimal solution must: 

• Have maximum expected return (x’r) to its risk 
level and; 

• Have minimum risk (x’Cov x) to its expected 
return level. 

Not only this, we want an algorithm that find all 
portfolios of minimum risk without varying the value or 
the risk aversion (1/ λ ) and solving the problem 
repeated times. Intuitively, the parametric algorithm 
would do the hard work just one time and after that to 
find any other solution would require just more one step. 
Wolfe proposed in its “long form” an algorithm based in 
sensibility analysis of the linear Kuhn-Tucker 
conditions. The Quadratic Parametric Problem, is 
transformed in a Linear Programming problem and the 
critical values críticos of λ  are found. Each critical 

value   of   λ    corresponds   to  one  solution (called by 



Markowitz as “corner portfolio”) and for any value of 
λ  between two critical values, its corresponding 
solution is a convex combination the two nearest 
critical solutions. Now the work is to find all the critical 
values of λ . Having this values, draw all the Efficient 
Frontier becomes trivial. 
The proposed algorithm solves a quadratic problem 
parametric of the folowing form: 
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Note that now the algorithm just find values of 0≥λ . 
The Parametric Quadratic Programming algorithm, 
known also as Phase 2 of the Wolfe’s Method is 
described below: 
 

Step 1. Solve the problem 2.3.1 with λ = 0. Let 0B  be 

the final basis and 0
2

0000 ,,,, zuvyx  the final 

solution. If any column corresponding to a 2z  

component is in 0B  - so this vertex is degenerated and 
this component values 0 – continue the Phase 1 until no 

component of 2z  remains in the basis. 

Step 2. Form the folowing Linear Programming 
Problem: 
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with 0λ = 0000 ,,,,0 uvyx  as initial feasible solution 

and 0B  its corresponding basis. Solve this problem by 
the Simplex Phase 2 with the restriction 2.2.5. 
Step 3. If with the restriction 2.2.5 it’s impossible to 
continue, i.e. the optimal solution is the initial feasible 
solution then stop! There’s no solution to 2.3.1 with 

0≥λ . 

Step 4. If - λ  can be decreased then 2.3.2 is unbounded 
(proved by Wolfe in [2]). So at each iteration r of the s 
iterations of the Simplex with the entry basis restriction 

2.2.5 we obtain a solution srxr ≤≤0, , where  
sλλλ ≤≤≤≤ ...0 10 , with each rλ  the value of the 

objective function at the iteration r and rx  is an optimal 

solution of the problem 2.3.1 for rλλ = . As 2.3.2 is 
unbounded, after s iterations we will have also a 

growing direction 1111 ,,, ++++ ssss uvyx  such that 
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is an optimal solution of 2.3.1 for any value of 0≥λ . 
 
2.4. Applications of the Quadratic Model 
 
We shown a quadratic approach to the portfolio 
optimization problem and a method to solve the 
quadratic problem obtaining a portfolio of minimum 
risk for any feasible level of expected return, 
parameterizing by the scalar λ . This set of portfolios is 
called Efficient Frontier and to draw the Efficient 
Frontier is one of the main applications of the Wolfe’s 
Method. Now we will show another applications of this 
quadratic approach. 
Having the Efficient Frontier, we can suggest a portfolio 
for any investor if we have also another function, based 
in features of the investor, that quantify, for each 
investiment, the level of satisfaction that he has doing 
that investment. This function is called investor’s utility 
function and its parameters can be the expected return, 
its uncertainty quantified by the risk or even both. The 
expression of an utility function can also change, 
according to the case. A more technical description of 
this function is out of the scope of this work and can be 
seen in [1], [4] and [5]. The investor now wants to find 
the point of the efficient frontier that maximizes the 
utility function. 

 



Let U(r) be the utility function expressed in terms of the 
expected return (it will change from investor to 

investor), lr  the minimum return of the efficient 
frontier ( rx´  for the solution of  2.3.1 with λ = 0) and 

ur  the maximum return of the frontier ( rx´  for the 

solution of 2.3.1 with +∞→λ ). If we know U(r) for 
the investor, we may propose the following problem: 
 
2.4.1 max  U(r) 

 s.t. ul rrr ≤≤  
 
If U(r) were a quadratic function (and really may be 
when we study risk averse investors) we could solve 
2.4.1 by the Wolfe’s Method. 
A different approach for the utility function was 
proposed by Markowitz in [6]. Markowitz used a 
quadratic approach of utility function to obtain a set of 
optimal portfolios in the space expected return x risk. 
The approach is based in the Taylor series expansion of 
U in the portfolio expected return. Therefore, for a risk 
averse investor: 

2)´)(´(''
2

1
)´)(´(')´()( rxRrxUrxRrxUrxURU ppp −+−+≅  

where x´r is the portfolio expected return (E( pR )) and 

pR  is the actual portfolio return. 

Applying the expectance operator in the equation 
above, we will obtain the following identity: 

( )[ ] 2)'(''
2

1
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This identity looks like the objective function proposed 
before. Actually it’s the same. The expected utility of 
portfolio was approached by a function whose 
parameters were only the expected return and the 
portfolio variance. Therefore a portfolio obtained by 

maximization of a function 2' prx σλ −  yields a good 

approach for the maximum expected utility for all the 
values of 0≥λ . 
One more application of a quadratic programming 
model is a very known problem in the financial field. It 
is related to mutual funds and more details can be seen 
in [9]. The problem is very seemed with the previous 
one. Known as Style Analysis, now we want to find a 
combination of investments in different asset classes 
(the investment styles), that represents what was the 
style really followed by the fund manager. Its clear that 
these classes must be mutually exclusive (or to be well 
near to this) and must represent all the possible styles to 
be followed in the market. The objective of the Style 
Analysis is to find something like coefficients of a 
linear regression between the fund returns and the 
classes returns, where each coefficient is the percentage 

of the total investments of the fund placed in assets of 
the corresponding class. 
The differences between the Style Analysis and a 
common regression inhabit in two facts. The first one is 
that we have constraints. One is a linear constraint, that 
is to make with that the sum of the coefficients is equal 
to 1, as in the model of portfolio optimization, because 
by assumption the investor places all its available 
money in the portfolio. Another restriction is the signal 
of the coefficients (they must be positive), since it’s 
practically impossible to operate in a sold position for 
all the assets of one determined investment class. The 
second fact is that we do not desire to minimize the sum 
of the squared errors, but the variance of the errors, 
therefore the objective of this analysis is to infer the 
maximum on the fund exposition to variations in the 
returns of the asset classes during the studied period. It 
is clearly that, in this point, an algorithm of quadratic 
programming is necessary, since we desire to minimize 
a quadratic and convex function (the variance of a sum) 
with linear constraints. Thus we have one more 
application of the Wolfe’s method.  

 
2.5. A Case Study: Are Efficient Portfolios Really 
Efficient? 

 
Now we will apply all the presented theory to real data 
of the Brazilian stock market. We implemented the 
algorithm in Visual Basic 5.0 (a didactic version is 
available in http://www.ime.usp.br/~fdias/marreqo.zip) 
and used the database of the software HSS Stock Market 
- version 1.3. The price series of the assets were free of 
dividends. The input data for the algorithm had been 
estimated as the following. To get consistent results, we 
decided to make 24 simulations. The expected market 
portfolio for one month was used as basic parameter. 
The market portfolio is the portfolio of the efficient 
frontier that has the greater value for the quotient 
defined in 1.1.1. and can be obtained finding the 
tangency point between the chart of the efficient frontier 
and a straight line that passes in the corresponding point 
to the risk free asset. The simulations had been divided 
in two groups of 12 months, where the first group 
corresponded to the period of July of 1999 the June of 
2000, in which the Brazilian stock market was a bull 
market, and the second group corresponded to the 
period of October of 2000 the September of 2001, in 
which the stock market was evidently a bear market. To 
generate the suggested portfolio for one determined 
month, we used monthly passed data in a horizon of 
twelve months and any costs of transaction and/or 
tributes had not been considered. We also admitted valid 
to buy stocks in any amount even fractions. 
For each estimate, we selected the 70 stocks that had the 
greater daily average business volume and that had been 
negotiated in at least 200 days in the considered horizon.  



To estimate the expected return of each asset, first we 
calculated its geometric average of the simple tax of 
return, defined as the quotient between the asset price at 
the time t+1 and its price at time t. This average tax was 
composite with a tax equivalent to the monthly dividend 
yield during the twelve used months. The value obtained 
minus one is the expected return. To estimate the 
covariance matrix, we used for each asset the excessive 
returns from the risk free asset. The risk free asset was 
the CDI-Over divulged by the CETIP. 
The behavior of each attained portfolio was compared 
with the performance of the market index, considered for 
these studies the IBOVESPA. Six comparison criteria 
between the portfolios and the market had been used. The 
first ones had been the return and the risk, defined as the 
standard deviation of the excessive returns. To be more 
criterious in the evaluation, we introduce four other 
comparison criteria, being the one of them beta of the 
portfolio, i.e. how much is expected for the portfolio 
oscillates for each unity oscillation of the market return. 
It is trivial that the beta of the IBOVESPA will always 
have to be equal to 1. The beta can be used as a measure 
of exposure of the portfolio to movements of the market. 
Thus the ideal strategy of active management will have to 
get portfolios of low beta during the periods where stock 
market were bear and of high beta for the periods where 
the stock market were bull.  
Another comparison criteria used matching was the 
Sharpe Index. This index corresponds to the quotient 
between excessive return and risk, as defined in 1.1.1. It 
can be interesting to classify two portfolios for way of 
this index, assuming that the higher its value the better is 
the portfolio, however this index alone can be applied 
just when the portfolio excessive return is greater than 
zero, if we do not want to obtain inconsistencies. As a 
comparison criteria, we used also the Treynor Index. This 
index corresponds to the quotient between excessive 
return and beta. As well as in the Index of Sharpe, it can 
be interesting to classify two portfolios by of this index, 
assuming that the higher its value the better is the 
portfolio, however this index alone if applies the 
portfolios with excessive return (or beta) greater than 
zero, or else this calculation also can generate 
inconsistencies. The last comparison criteria between 
portfolios was the RAP (Risk Adjusted Performance) of 
Modigliani, that corresponds how much it would be the 
return of a portfolio if its risk was justifd to the risk of the 
market index. It is trivial that the RAP of the market 
index is its proper return. 
Tables 1 and 2 show which were the composition of the 
portfolios suggested for the method for each one of the 
twelve months of high and for each one of the twelve 
months of low. Each column corresponds to the portfolio 
chosen for its respective month. In tables 3 and 4 the 
monthly returns of each investment alternative are de-
tailed  in  the  first twelve rows and in the rows below the 

performance indicators of the same ones, being each 
column corresponding to an investment alternative. In 
figures 1 and 2 we have a comparative chart of returns 
between the available options of investment, 
correspondent how much it would have varied one 
Brazilian Real invested in each one of them. We can 
clarely see with that a management strategy based on 
the Markowitz criterion, optimized for the Method of 
Wolfe, had a better performance than the market, in the 
bull periods and in the bear periods. 

In both periods we can notice that the portfolios 
generated for the algorithm had had an average return, 
Sharpe Index and consistently Treynor Index better than 
the market. Moreover, even so in both the periods the 
risk of the portfolio generated for the algorithm was 
slightly higher (from 3rd decimal place), the 
performance adjusted to the risk was higher than the 
market. Moreover, it was noticed that the beta of the 
generated strategy was higher in the bull period, having 
fallen in the bear period, what it confirms the previously 
said about an excellent exposure market risks. 
 
 

 
 



We can notice that exactly during the studied bear 
period, while the stock market accumulated losses of 
19.39% in the 11 first months, our active management 
accumulated 8.01% profits. These profits had been 
wasted in the month of September of 2001, that he was 
catastrophic to the market due the terrorist attacks to the 
United States, but still thus the proposed strategy won 
the market in 18.84% in one year. During the high 
period of the strategy proposal it won the market in 
14.90% in one year. Without no shade of doubt, these 
results are not worthless. 

 

 
 
 

  jul/99 ago/99 sep/99 oct/99 nov/99 dec/99 jan/00 feb/00 mar/00 apr/00 may/00 jun/00 
BBAS4             0,13404 0,08738         
BOBR4         0,05715 0,1105             
BRHA4             0,20916 0,36208   0,23971     
CBEE3                       0,09247 
CEEB3     0,25598 0,27757                 
COGU4             0,02181           
CPSL3 0,07183                       
CRUZ3 0,27161 0,34866 0,3828 0,24774   0,03473             
CSNA3 0,09125 0,09003 0,10002 0,05021 0,06287               
ELAT3     0,01984                   
ELET3     0,00325       0,01785           
EMBR3           0,11729             
EMBR4             0,14468 0,0941 0,18832 0,09205 0,21945 0,17194 
GETI4                       0,0606 
ICPI4                 0,11341       
ITAU4         0,14382 0,08987             
KLAB4       0,07704 0,10354 0,00486             
LAME4 0,10817                       
LIGH3                     0,17251 0,00501 
OSAO4 0,22744                       
PCAR4       0,0396 0,08021   0,19202 0,00085         
PRGA4 0,12749 0,18394 0,10813 0,13117 0,14796 0,12985 0,03756           
PTIP4                 0,07264 0,23124 0,07052 0,0765 
SOES4 0,10221     0,04662 0,34148 0,40472 0,08734           
TCOC3                     0,31618 0,32419 
TCSP3       0,03922 0,00642 0,0368 0,11812 0,07081 0,05828       
TEPR4     0,12999 0,09084 0,05655       0,17461       
TLPP3                       0,04411 
TMCP4   0,15365           0,1955 0,22325 0,27951 0,00062 0,00016 
TNLP3   0,22373                     
TSEP3           0,07139             
USIM5             0,01106 0,1032 0,13688 0,12237     
VALE3               0,08607     0,22073 0,22502 
VALE5             0,02638   0,03261 0,03513     
Table 1 – Composition of the efficient portfolios obtained for the period from jul/1999 to jun/2000. Blank spaces 
means null investment. 
 



 
 
 
 
 
 
 
 
 
 
 
 

  oct/00 nov/00 dec/00 jan/01 feb/01 mar/01 apr/01 may/01 jun/01 jul/01 ago/01 sep/01 
AMBV3                   0,16285 0,11028 0,18488 
AMBV4               0,08101 0,06977       
BBDC3       0,07347         0,0467       
BRDT4                   0,12314 0,20737 0,04747 
CBEE3 0,1567                       
CESP4   0,00091 0,05326 0,0515 0,10434 0,10731 0,12942           
CGAS4     0,03965                   
CNFB4                       0,37036 
CPNE5       0,15277                 
CPSL3       0,16701 0,07713 0,06523 0,00404           
CRUZ3   0,11165                     
CSNA3               0,02734         
CSTB4                 0,01859       
EMBR4 0,17267 0,14418 0,1728 0,19399 0,18011 0,1331 0,2242   0,04247 0,05511 0,02427   
GETI4 0,10612 0,11974     0,21436 0,33725 0,35496 0,09513 0,16682 0,05772   0,0933 
GRSU3               0,3673 0,26223 0,30835 0,31994 0,14262 
ITAU3         0,24973 0,09895 0,16664 0,2439 0,26451 0,25509 0,32231 0,07218 
KLAB4 0,12674 0,24659 0,29391                   
LIGHT3 0,14427                       
PCAR4       0,06465                 
PRGA4                       0,08919 
PTIP4 0,04571                       
TCOC3 0,23266 0,29405 0,35836 0,2554 0,16064 0,25815 0,12074           
TERJ4     0,08202                   
TMGR6               0,18532 0,12892 0,03775 0,01583   
TSPP3         0,01371               
USIM5 0,01515 0,08288                     
VALE3       0,04121                 
Table 2 – Composition of the efficient portfolios obtained for the period from oct/2000 to set/2001. Blank spaces 
means null investment. 



 
  MARKET PORTFOLIO CDI    MARKET PORTFOLIO CDI 

jul/99 -10,193% -8,988% 1,660%  oct/00 -6,661% -6,309% 1,280% 
ago/99 1,178% 9,925% 1,624%  nov/00 -10,628% -3,606% 1,216% 
sep/99 5,131% 8,419% 1,399%  dec/00 14,842% 8,617% 1,135% 
oct/99 5,348% 0,839% 1,173%  jan/01 15,814% 5,572% 1,203% 

nov/99 17,761% 18,208% 1,304%  feb/01 -10,078% -3,417% 1,009% 
dec/99 24,046% 25,773% 1,580%  mar/01 -9,144% 1,719% 1,248% 
jan/00 -4,113% -1,396% 1,371%  apr/01 3,318% -1,971% 1,179% 
feb/00 7,762% -1,465% 1,440%  may/01 -1,797% -3,803% 1,271% 

mar/00 0,906% 3,284% 1,440%  jun/01 -0,614% 22,386% 1,269% 
apr/00 -12,811% -11,507% 1,293%  jul/01 -5,529% -1,843% 1,431% 

may/00 -3,739% -3,773% 1,486%  Ago/01 -6,645% -6,291% 1,600% 
jun/00 11,841% 14,262% 1,387%  Sep/01 -17,173% -20,739% 1,323% 

ACUM. 43,876% 58,777% 18,573%  ACUM. -33,231% -14,393% 16,262% 
         
MEAN RET. 3,593% 4,465% 1,430%  MEAN RET. -2,858% -0,807% 1,264% 
MEAN EXC. 2,163% 3,035% 0,000%  MEAN EXC. -4,122% -2,071% 0,000% 
RISK 10,397% 10,681% 0,000%  RISK 9,608% 9,856% 0,000% 
BETA 1,000000 0,8975341    BETA 1,00000 0,59240   
SHARPE 0,208044 0,2841785    SHARPE -0,42898 -0,21011   
TREYNOR 2,163% 3,382%    TREYNOR -4,122% -3,495%   
RAP 3,593% 4,259%    RAP -2,858% -2,124%   
Table 3 – Comparison between jul/99 and jun/00                     Tabela 4 – Comparison between oct/00 and sep/01 
 
2.6. Limitations of the Quadratic Model  
 
 
The quadratic approach of the expansion of the utility 
function in power series turns the model most easy of 
being applied, however it is more limited, since it is not 
considering central moments of higher order, as the 
skewness and kurtosis. This can be supported by the 
hypothesis of that the returns of the market are i.i.d., and 
as a consequence of the central limit theorem, it would 
generate a normal distribution for the returns of an risky 
asset. Since the returns of asset with risk have normal 
distribution, its skewness is null and its kurtosis excess, 
what becomes useless the study of central moments of 
higher order. However it is a well known fact that the 
distribution of the returns of an risky asset does not 
follow actually a normal distribution, and do not consider 
these higher order moments does not give a good 
approach for the utility. 
An example can be formulated in the following way: 
after market studies, one conclude that the expected 
return of an asset is of 10% and its risk is of 3.5%. This 
would mean to say that, assuming normality in the 
returns, in approximately 67% of the cases the return of 
this asset would be between 6.5% and 13.5%. However if 
this distribution were not normal, having one determined 
level of skewness, in fact the used reliable interval in the 
previous inference would not mean more 67% of the 
cases.  
 

In particular, if the asymmetry is positive, a reliable 
interval that starts from point 6,5% and includes same 
67% of the cases will contain higher values than 13,5% 
being, for example, the interval between 6.5% and 
14.5% as illustrated in Figure 4. More catastrophic will 
be if the skewness if not taken into account but it exists 
and either negative. In this situation, the hypothetical 
interval of 67% of the cases from 6.5% could be 
between 6.5% and 12%, as in figure 5, what it makes 
our forecasts that seemed to be logical in the truth to be 
excessively optimistical. The higher is, in module, the 
value of the skewness coefficient of the distribution of 
returns, weakker will be the concept of variance and 
covariance as a measure of risk of an investment. 
Intuitively, we conclude that a good approach of the 
function utility must take into account the skewness and 
to try maximizes it. Moreover, it has studies that they 
affirm that even when the assets possess normal 
distribution, dynamic strategies of purchase and sale can 
generate significantly skewed distributions. In this work 
we only speak of basic assets, but it can be desired to 
include derivatives in the way active them with risk with 
which we desire to work. In this point, it is well known 
that derivatives follow a highly skewed distribution of 
returns, since the price of a derivative in the expiration 
date is explained by the combination between a constant 
function equal to zero for values below of a point and 
linear for values above of this point. Thus, the quadratic 
model becomes impracticable for the inclusion of 
derivatives in the portfolio optimization model.  

 



 
Fig. 3 – Normal probability distribution with 
average 10 and standard deviation 3,5. 

 
Fig. 4 – Probability distribution with positive skewness, average 

10 and standard deviation 3,5. The dotted line is a normal 
distribution of same average and standard deviation. 

 
Fig. 5 – Probability distribution with negative skewness, average 10 and standard deviation 3,5. The dotted line is a 

normal distribution of same average and standard deviation. 
 
 
 

Moreover, the optimization model of considered above 
yieds a solution for just one period, without taking into 
consideration expected utilities for posterior periods. 
Currently stochastic programming algorithms are also 
subject of other research that do not consider more the 
objective function of the problem to be decided as a 
function of one alone period, but a function whose 
variables are determined by stochastic processes and we 
now desire to maximize the utility for the following 
period added to the expected utility for the other diverse 
periods. This expected utility could be estimated by a 
tree that describes all the possible scenes to occur later, 
also containing the probability of this occurrence. More 
advanced studies in stochastic programming are out of 
the scope of this work. 
Another limitation of the model studied so far is that 
linear constraints have little power of nonlinear 
constraints. Nonlinear models are more general and 
allowing constraints on nonlinear factors could enrich 
still more the model and leaves it closer to the reality.  

Finally, there are studies that deny at all the hypothesis 
that the market is normal or even near to it and go to of 
nonlinear dynamic models with long memory and 
extreme values. Mandelbrot considered in [12] a form to 
analyze the return series as a fractal distribution, 
oposing totally the approach of risk by a covariance 
matrix. Tonis Vaga considered in [11] the Hypothesis of 
the Coherent Market, where the probabilist distribution 
of the returns changes dinamically with the time based 
on a function that also was used by Ising to model the 
ferromagnetism. These are totally different approaches 
of the market, but not the less promising ones. 

 



3   Portfolio Skewness 
 
3.1. The Model Formulation 
 
We had shown an investor that wants to maximize the 
expected value of one utility function U(R), where R is 
the expected return of its investment. The attained 
results are based in the Taylor series expansion of this 
function until its second derivative, generating as 
objective function when we use the expectance operator 
something whose parameters are the two first central 
moments of the portfolio return. 
Now we will extend the attained result, considering the 
third central moment – the skewness of the returns in 
relation of the mean. 
For a portfolio with n risky assets, the first three central 

moments of the portfolio return ( pR ) are given by: 
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with iR  = expected return of the asset i 

 ijσ  = covariance between the returns of i and j 

(for i = j it is the variance) 

ijkm = co-skewness between the returns of i, j 

and k, defined by the third central moment not 
normalized. 
 
So for a risk averse investor, the portfolio expected 
utility will be: 
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In this way, maximize the expected utility for a risk 
averse investor is to solve: 
3.1.1
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f freedom 
of this new problem, the investor skewness preference. 

Note that varying at the same time the parameters os 
parâmetros �λ and α , we will obtain an efficient surface 
in the 3-dimensional space risk x expected return x 
skewness. 

 
3.2. Conclusions and Extensions for Future Research 
 
We shown a brief description of the Markowitz’ 
quadratic model. This model shown to explain very well 
the market behaviour. However we saw that a quadratic 
approach is good only when the market follows a normal 
distribution. There are evidences that the market follows 
a dynamical behaviour, being normal sometimes and do 
not so in other periods. Therefore we proposed another 
model where the third central moment is introduced and 
the investor skewness preference is taked into account. 
At this time, new doubts appear: 

• What method is more efficient to solve it? 
Would be the gradient method? 

• Methodology for the attainment of the efficient 
surface: is it really necessary to solve for all the 
parameters or is possible to model the optimality 
conditions of this problem as a new parametric 
linear or quadratic problem, and to get critical 
values of the parameter and therefore all the 
surface? 

• Although the problem has two degrees of 
freedom, is there some relation between them? 
Is possible to model the problem using just one 
parameter? 

These and others doubts that probably will appear are a 
broad research field to be explored. To explain them is a 
difficult task, but when concluded will generate a great 
contribution to the current theory, mainly when related to 
efficient portfolios including options, since the quadratic 
model does not give any support to this case. 
Not only this, a large research field is opened for 
applications of models highly nonlinear in the financial 
market, like Fractals, Chaos Theory and Extreme Value 
Theory. 
Much work still remains to be done. 
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